Metamath Proof Explorer


Theorem norbi

Description: If neither of two propositions is true, then these propositions are equivalent. (Contributed by BJ, 26-Apr-2019)

Ref Expression
Assertion norbi ¬ φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 orc φ φ ψ
2 olc ψ φ ψ
3 1 2 pm5.21ni ¬ φ ψ φ ψ