Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
nordeq
Next ⟩
ordn2lp
Metamath Proof Explorer
Ascii
Unicode
Theorem
nordeq
Description:
A member of an ordinal class is not equal to it.
(Contributed by
NM
, 25-May-1998)
Ref
Expression
Assertion
nordeq
⊢
Ord
⁡
A
∧
B
∈
A
→
A
≠
B
Proof
Step
Hyp
Ref
Expression
1
ordirr
⊢
Ord
⁡
A
→
¬
A
∈
A
2
eleq1
⊢
A
=
B
→
A
∈
A
↔
B
∈
A
3
2
notbid
⊢
A
=
B
→
¬
A
∈
A
↔
¬
B
∈
A
4
1
3
syl5ibcom
⊢
Ord
⁡
A
→
A
=
B
→
¬
B
∈
A
5
4
necon2ad
⊢
Ord
⁡
A
→
B
∈
A
→
A
≠
B
6
5
imp
⊢
Ord
⁡
A
∧
B
∈
A
→
A
≠
B