Metamath Proof Explorer


Theorem norec2fn

Description: The double-recursion operator on surreals yields a function on pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Hypothesis norec2.1 F = norec2 s #A# G
Assertion norec2fn F Fn No × No

Proof

Step Hyp Ref Expression
1 norec2.1 F = norec2 s #A# G
2 eqid c d | c L d R d = c d | c L d R d
3 eqid a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b = a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b
4 2 3 noxpordfr a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No
5 2 3 noxpordpo a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No
6 2 3 noxpordse a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No
7 df-norec2 norec2 s #A# G = frecs a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No G
8 1 7 eqtri F = frecs a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No G
9 8 fpr1 a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No F Fn No × No
10 4 5 6 9 mp3an F Fn No × No