Metamath Proof Explorer


Theorem norec2ov

Description: The value of the double-recursion surreal function. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Hypothesis norec2.1 No typesetting found for |- F = norec2 ( G ) with typecode |-
Assertion norec2ov Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A F B ) = ( <. A , B >. G ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 norec2.1 Could not format F = norec2 ( G ) : No typesetting found for |- F = norec2 ( G ) with typecode |-
2 df-ov A F B = F A B
3 opelxp A B No × No A No B No
4 eqid Could not format { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } = { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } : No typesetting found for |- { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } = { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } with typecode |-
5 eqid Could not format { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } = { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } : No typesetting found for |- { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } = { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } with typecode |-
6 4 5 noxpordfr Could not format { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) : No typesetting found for |- { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) with typecode |-
7 4 5 noxpordpo Could not format { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) : No typesetting found for |- { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) with typecode |-
8 4 5 noxpordse Could not format { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) : No typesetting found for |- { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) with typecode |-
9 6 7 8 3pm3.2i Could not format ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) ) : No typesetting found for |- ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) ) with typecode |-
10 df-norec2 Could not format norec2 ( G ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) : No typesetting found for |- norec2 ( G ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) with typecode |-
11 1 10 eqtri Could not format F = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) : No typesetting found for |- F = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) with typecode |-
12 11 fpr2 Could not format ( ( ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) ) /\ <. A , B >. e. ( No X. No ) ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) : No typesetting found for |- ( ( ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) ) /\ <. A , B >. e. ( No X. No ) ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) with typecode |-
13 9 12 mpan Could not format ( <. A , B >. e. ( No X. No ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) : No typesetting found for |- ( <. A , B >. e. ( No X. No ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) with typecode |-
14 3 13 sylbir Could not format ( ( A e. No /\ B e. No ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) with typecode |-
15 2 14 eqtrid Could not format ( ( A e. No /\ B e. No ) -> ( A F B ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A F B ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) with typecode |-
16 4 5 noxpordpred Could not format ( ( A e. No /\ B e. No ) -> Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) = ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) = ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) with typecode |-
17 16 reseq2d Could not format ( ( A e. No /\ B e. No ) -> ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) = ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) = ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) with typecode |-
18 17 oveq2d Could not format ( ( A e. No /\ B e. No ) -> ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) = ( <. A , B >. G ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) = ( <. A , B >. G ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) ) with typecode |-
19 15 18 eqtrd Could not format ( ( A e. No /\ B e. No ) -> ( A F B ) = ( <. A , B >. G ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A F B ) = ( <. A , B >. G ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) ) with typecode |-