Metamath Proof Explorer


Theorem norec2ov

Description: The value of the double-recursion surreal function. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Hypothesis norec2.1 F = norec2 s #A# G
Assertion norec2ov A No B No A F B = A B G F L A R A A × L B R B B A B

Proof

Step Hyp Ref Expression
1 norec2.1 F = norec2 s #A# G
2 df-ov A F B = F A B
3 opelxp A B No × No A No B No
4 eqid c d | c L d R d = c d | c L d R d
5 eqid a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b = a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b
6 4 5 noxpordfr a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No
7 4 5 noxpordpo a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No
8 4 5 noxpordse a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No
9 6 7 8 3pm3.2i a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No
10 df-norec2 norec2 s #A# G = frecs a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No G
11 1 10 eqtri F = frecs a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No G
12 11 fpr2 a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No A B No × No F A B = A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B
13 9 12 mpan A B No × No F A B = A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B
14 3 13 sylbir A No B No F A B = A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B
15 2 14 eqtrid A No B No A F B = A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B
16 4 5 noxpordpred A No B No Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B = L A R A A × L B R B B A B
17 16 reseq2d A No B No F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B = F L A R A A × L B R B B A B
18 17 oveq2d A No B No A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B = A B G F L A R A A × L B R B B A B
19 15 18 eqtrd A No B No A F B = A B G F L A R A A × L B R B B A B