Metamath Proof Explorer


Theorem norecdiv

Description: If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion norecdiv ANoA0sBNoxNoAsx=1syNoAsy=B

Proof

Step Hyp Ref Expression
1 simprl ANoA0sBNowNoAsw=1swNo
2 simpl3 ANoA0sBNowNoAsw=1sBNo
3 1 2 mulscld ANoA0sBNowNoAsw=1swsBNo
4 oveq1 Asw=1sAswsB=1ssB
5 4 adantl wNoAsw=1sAswsB=1ssB
6 5 adantl ANoA0sBNowNoAsw=1sAswsB=1ssB
7 simpl1 ANoA0sBNowNoAsw=1sANo
8 7 1 2 mulsassd ANoA0sBNowNoAsw=1sAswsB=AswsB
9 2 mulslidd ANoA0sBNowNoAsw=1s1ssB=B
10 6 8 9 3eqtr3d ANoA0sBNowNoAsw=1sAswsB=B
11 oveq2 z=wsBAsz=AswsB
12 11 eqeq1d z=wsBAsz=BAswsB=B
13 12 rspcev wsBNoAswsB=BzNoAsz=B
14 3 10 13 syl2anc ANoA0sBNowNoAsw=1szNoAsz=B
15 14 rexlimdvaa ANoA0sBNowNoAsw=1szNoAsz=B
16 15 imp ANoA0sBNowNoAsw=1szNoAsz=B
17 oveq2 x=wAsx=Asw
18 17 eqeq1d x=wAsx=1sAsw=1s
19 18 cbvrexvw xNoAsx=1swNoAsw=1s
20 19 anbi2i ANoA0sBNoxNoAsx=1sANoA0sBNowNoAsw=1s
21 oveq2 y=zAsy=Asz
22 21 eqeq1d y=zAsy=BAsz=B
23 22 cbvrexvw yNoAsy=BzNoAsz=B
24 16 20 23 3imtr4i ANoA0sBNoxNoAsx=1syNoAsy=B