Metamath Proof Explorer


Theorem norm-ii

Description: Triangle inequality for norms. Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion norm-ii A B norm A + B norm A + norm B

Proof

Step Hyp Ref Expression
1 fvoveq1 A = if A A 0 norm A + B = norm if A A 0 + B
2 fveq2 A = if A A 0 norm A = norm if A A 0
3 2 oveq1d A = if A A 0 norm A + norm B = norm if A A 0 + norm B
4 1 3 breq12d A = if A A 0 norm A + B norm A + norm B norm if A A 0 + B norm if A A 0 + norm B
5 oveq2 B = if B B 0 if A A 0 + B = if A A 0 + if B B 0
6 5 fveq2d B = if B B 0 norm if A A 0 + B = norm if A A 0 + if B B 0
7 fveq2 B = if B B 0 norm B = norm if B B 0
8 7 oveq2d B = if B B 0 norm if A A 0 + norm B = norm if A A 0 + norm if B B 0
9 6 8 breq12d B = if B B 0 norm if A A 0 + B norm if A A 0 + norm B norm if A A 0 + if B B 0 norm if A A 0 + norm if B B 0
10 ifhvhv0 if A A 0
11 ifhvhv0 if B B 0
12 10 11 norm-ii-i norm if A A 0 + if B B 0 norm if A A 0 + norm if B B 0
13 4 9 12 dedth2h A B norm A + B norm A + norm B