Metamath Proof Explorer


Theorem norm-ii-i

Description: Triangle inequality for norms. Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses norm-ii.1 A
norm-ii.2 B
Assertion norm-ii-i norm A + B norm A + norm B

Proof

Step Hyp Ref Expression
1 norm-ii.1 A
2 norm-ii.2 B
3 1re 1
4 ax-1cn 1
5 4 cjrebi 1 1 = 1
6 3 5 mpbi 1 = 1
7 6 oveq1i 1 B ih A = 1 B ih A
8 2 1 hicli B ih A
9 8 mulid2i 1 B ih A = B ih A
10 7 9 eqtri 1 B ih A = B ih A
11 1 2 hicli A ih B
12 11 mulid2i 1 A ih B = A ih B
13 10 12 oveq12i 1 B ih A + 1 A ih B = B ih A + A ih B
14 abs1 1 = 1
15 4 2 1 14 normlem7 1 B ih A + 1 A ih B 2 A ih A B ih B
16 13 15 eqbrtrri B ih A + A ih B 2 A ih A B ih B
17 eqid 1 B ih A + 1 A ih B = 1 B ih A + 1 A ih B
18 4 2 1 17 normlem2 1 B ih A + 1 A ih B
19 4 cjcli 1
20 19 8 mulcli 1 B ih A
21 4 11 mulcli 1 A ih B
22 20 21 addcli 1 B ih A + 1 A ih B
23 22 negrebi 1 B ih A + 1 A ih B 1 B ih A + 1 A ih B
24 18 23 mpbi 1 B ih A + 1 A ih B
25 13 24 eqeltrri B ih A + A ih B
26 2re 2
27 hiidge0 A 0 A ih A
28 1 27 ax-mp 0 A ih A
29 hiidrcl A A ih A
30 1 29 ax-mp A ih A
31 30 sqrtcli 0 A ih A A ih A
32 28 31 ax-mp A ih A
33 hiidge0 B 0 B ih B
34 2 33 ax-mp 0 B ih B
35 hiidrcl B B ih B
36 2 35 ax-mp B ih B
37 36 sqrtcli 0 B ih B B ih B
38 34 37 ax-mp B ih B
39 32 38 remulcli A ih A B ih B
40 26 39 remulcli 2 A ih A B ih B
41 30 36 readdcli A ih A + B ih B
42 25 40 41 leadd2i B ih A + A ih B 2 A ih A B ih B A ih A + B ih B + B ih A + A ih B A ih A + B ih B + 2 A ih A B ih B
43 16 42 mpbi A ih A + B ih B + B ih A + A ih B A ih A + B ih B + 2 A ih A B ih B
44 1 2 1 2 normlem8 A + B ih A + B = A ih A + B ih B + A ih B + B ih A
45 11 8 addcomi A ih B + B ih A = B ih A + A ih B
46 45 oveq2i A ih A + B ih B + A ih B + B ih A = A ih A + B ih B + B ih A + A ih B
47 44 46 eqtri A + B ih A + B = A ih A + B ih B + B ih A + A ih B
48 32 recni A ih A
49 38 recni B ih B
50 48 49 binom2i A ih A + B ih B 2 = A ih A 2 + 2 A ih A B ih B + B ih B 2
51 48 sqcli A ih A 2
52 2cn 2
53 48 49 mulcli A ih A B ih B
54 52 53 mulcli 2 A ih A B ih B
55 49 sqcli B ih B 2
56 51 54 55 add32i A ih A 2 + 2 A ih A B ih B + B ih B 2 = A ih A 2 + B ih B 2 + 2 A ih A B ih B
57 30 sqsqrti 0 A ih A A ih A 2 = A ih A
58 28 57 ax-mp A ih A 2 = A ih A
59 36 sqsqrti 0 B ih B B ih B 2 = B ih B
60 34 59 ax-mp B ih B 2 = B ih B
61 58 60 oveq12i A ih A 2 + B ih B 2 = A ih A + B ih B
62 61 oveq1i A ih A 2 + B ih B 2 + 2 A ih A B ih B = A ih A + B ih B + 2 A ih A B ih B
63 50 56 62 3eqtri A ih A + B ih B 2 = A ih A + B ih B + 2 A ih A B ih B
64 43 47 63 3brtr4i A + B ih A + B A ih A + B ih B 2
65 1 2 hvaddcli A + B
66 hiidge0 A + B 0 A + B ih A + B
67 65 66 ax-mp 0 A + B ih A + B
68 32 38 readdcli A ih A + B ih B
69 68 sqge0i 0 A ih A + B ih B 2
70 hiidrcl A + B A + B ih A + B
71 65 70 ax-mp A + B ih A + B
72 68 resqcli A ih A + B ih B 2
73 71 72 sqrtlei 0 A + B ih A + B 0 A ih A + B ih B 2 A + B ih A + B A ih A + B ih B 2 A + B ih A + B A ih A + B ih B 2
74 67 69 73 mp2an A + B ih A + B A ih A + B ih B 2 A + B ih A + B A ih A + B ih B 2
75 64 74 mpbi A + B ih A + B A ih A + B ih B 2
76 30 sqrtge0i 0 A ih A 0 A ih A
77 28 76 ax-mp 0 A ih A
78 36 sqrtge0i 0 B ih B 0 B ih B
79 34 78 ax-mp 0 B ih B
80 32 38 addge0i 0 A ih A 0 B ih B 0 A ih A + B ih B
81 77 79 80 mp2an 0 A ih A + B ih B
82 68 sqrtsqi 0 A ih A + B ih B A ih A + B ih B 2 = A ih A + B ih B
83 81 82 ax-mp A ih A + B ih B 2 = A ih A + B ih B
84 75 83 breqtri A + B ih A + B A ih A + B ih B
85 normval A + B norm A + B = A + B ih A + B
86 65 85 ax-mp norm A + B = A + B ih A + B
87 normval A norm A = A ih A
88 1 87 ax-mp norm A = A ih A
89 normval B norm B = B ih B
90 2 89 ax-mp norm B = B ih B
91 88 90 oveq12i norm A + norm B = A ih A + B ih B
92 84 86 91 3brtr4i norm A + B norm A + norm B