Metamath Proof Explorer


Theorem norm-iii

Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 25-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion norm-iii A B norm A B = A norm B

Proof

Step Hyp Ref Expression
1 fvoveq1 A = if A A 0 norm A B = norm if A A 0 B
2 fveq2 A = if A A 0 A = if A A 0
3 2 oveq1d A = if A A 0 A norm B = if A A 0 norm B
4 1 3 eqeq12d A = if A A 0 norm A B = A norm B norm if A A 0 B = if A A 0 norm B
5 oveq2 B = if B B 0 if A A 0 B = if A A 0 if B B 0
6 5 fveq2d B = if B B 0 norm if A A 0 B = norm if A A 0 if B B 0
7 fveq2 B = if B B 0 norm B = norm if B B 0
8 7 oveq2d B = if B B 0 if A A 0 norm B = if A A 0 norm if B B 0
9 6 8 eqeq12d B = if B B 0 norm if A A 0 B = if A A 0 norm B norm if A A 0 if B B 0 = if A A 0 norm if B B 0
10 0cn 0
11 10 elimel if A A 0
12 ifhvhv0 if B B 0
13 11 12 norm-iii-i norm if A A 0 if B B 0 = if A A 0 norm if B B 0
14 4 9 13 dedth2h A B norm A B = A norm B