Metamath Proof Explorer


Theorem norm-iii-i

Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)

Ref Expression
Hypotheses norm-iii.1 A
norm-iii.2 B
Assertion norm-iii-i norm A B = A norm B

Proof

Step Hyp Ref Expression
1 norm-iii.1 A
2 norm-iii.2 B
3 1 1 2 2 his35i A B ih A B = A A B ih B
4 3 fveq2i A B ih A B = A A B ih B
5 1 cjmulrcli A A
6 hiidrcl B B ih B
7 2 6 ax-mp B ih B
8 1 cjmulge0i 0 A A
9 hiidge0 B 0 B ih B
10 2 9 ax-mp 0 B ih B
11 5 7 8 10 sqrtmulii A A B ih B = A A B ih B
12 4 11 eqtri A B ih A B = A A B ih B
13 1 2 hvmulcli A B
14 normval A B norm A B = A B ih A B
15 13 14 ax-mp norm A B = A B ih A B
16 absval A A = A A
17 1 16 ax-mp A = A A
18 normval B norm B = B ih B
19 2 18 ax-mp norm B = B ih B
20 17 19 oveq12i A norm B = A A B ih B
21 12 15 20 3eqtr4i norm A B = A norm B