Metamath Proof Explorer


Theorem norm1

Description: From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion norm1 A A 0 norm 1 norm A A = 1

Proof

Step Hyp Ref Expression
1 normcl A norm A
2 1 adantr A A 0 norm A
3 normne0 A norm A 0 A 0
4 3 biimpar A A 0 norm A 0
5 2 4 rereccld A A 0 1 norm A
6 5 recnd A A 0 1 norm A
7 simpl A A 0 A
8 norm-iii 1 norm A A norm 1 norm A A = 1 norm A norm A
9 6 7 8 syl2anc A A 0 norm 1 norm A A = 1 norm A norm A
10 normgt0 A A 0 0 < norm A
11 10 biimpa A A 0 0 < norm A
12 1re 1
13 0le1 0 1
14 divge0 1 0 1 norm A 0 < norm A 0 1 norm A
15 12 13 14 mpanl12 norm A 0 < norm A 0 1 norm A
16 2 11 15 syl2anc A A 0 0 1 norm A
17 5 16 absidd A A 0 1 norm A = 1 norm A
18 17 oveq1d A A 0 1 norm A norm A = 1 norm A norm A
19 1 recnd A norm A
20 19 adantr A A 0 norm A
21 20 4 recid2d A A 0 1 norm A norm A = 1
22 9 18 21 3eqtrd A A 0 norm 1 norm A A = 1