Step |
Hyp |
Ref |
Expression |
1 |
|
normcl |
|
2 |
1
|
adantr |
|
3 |
|
normne0 |
|
4 |
3
|
biimpar |
|
5 |
2 4
|
rereccld |
|
6 |
5
|
recnd |
|
7 |
|
simpl |
|
8 |
|
norm-iii |
|
9 |
6 7 8
|
syl2anc |
|
10 |
|
normgt0 |
|
11 |
10
|
biimpa |
|
12 |
|
1re |
|
13 |
|
0le1 |
|
14 |
|
divge0 |
|
15 |
12 13 14
|
mpanl12 |
|
16 |
2 11 15
|
syl2anc |
|
17 |
5 16
|
absidd |
|
18 |
17
|
oveq1d |
|
19 |
1
|
recnd |
|
20 |
19
|
adantr |
|
21 |
20 4
|
recid2d |
|
22 |
9 18 21
|
3eqtrd |
|