Metamath Proof Explorer


Theorem norm1exi

Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis norm1ex.1 H S
Assertion norm1exi x H x 0 y H norm y = 1

Proof

Step Hyp Ref Expression
1 norm1ex.1 H S
2 neeq1 x = z x 0 z 0
3 2 cbvrexvw x H x 0 z H z 0
4 1 sheli z H z
5 normcl z norm z
6 4 5 syl z H norm z
7 6 adantr z H z 0 norm z
8 normne0 z norm z 0 z 0
9 4 8 syl z H norm z 0 z 0
10 9 biimpar z H z 0 norm z 0
11 7 10 rereccld z H z 0 1 norm z
12 11 recnd z H z 0 1 norm z
13 simpl z H z 0 z H
14 shmulcl H S 1 norm z z H 1 norm z z H
15 1 14 mp3an1 1 norm z z H 1 norm z z H
16 12 13 15 syl2anc z H z 0 1 norm z z H
17 norm1 z z 0 norm 1 norm z z = 1
18 4 17 sylan z H z 0 norm 1 norm z z = 1
19 fveqeq2 y = 1 norm z z norm y = 1 norm 1 norm z z = 1
20 19 rspcev 1 norm z z H norm 1 norm z z = 1 y H norm y = 1
21 16 18 20 syl2anc z H z 0 y H norm y = 1
22 21 rexlimiva z H z 0 y H norm y = 1
23 ax-1ne0 1 0
24 23 neii ¬ 1 = 0
25 eqeq1 norm y = 1 norm y = 0 1 = 0
26 24 25 mtbiri norm y = 1 ¬ norm y = 0
27 1 sheli y H y
28 norm-i y norm y = 0 y = 0
29 27 28 syl y H norm y = 0 y = 0
30 29 necon3bbid y H ¬ norm y = 0 y 0
31 26 30 syl5ib y H norm y = 1 y 0
32 31 reximia y H norm y = 1 y H y 0
33 neeq1 y = z y 0 z 0
34 33 cbvrexvw y H y 0 z H z 0
35 32 34 sylib y H norm y = 1 z H z 0
36 22 35 impbii z H z 0 y H norm y = 1
37 3 36 bitri x H x 0 y H norm y = 1