Metamath Proof Explorer


Theorem norm3adifi

Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 3-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis norm3adift.1 C
Assertion norm3adifi A B norm A - C norm B - C norm A - B

Proof

Step Hyp Ref Expression
1 norm3adift.1 C
2 fvoveq1 A = if A A 0 norm A - C = norm if A A 0 - C
3 2 fvoveq1d A = if A A 0 norm A - C norm B - C = norm if A A 0 - C norm B - C
4 fvoveq1 A = if A A 0 norm A - B = norm if A A 0 - B
5 3 4 breq12d A = if A A 0 norm A - C norm B - C norm A - B norm if A A 0 - C norm B - C norm if A A 0 - B
6 fvoveq1 B = if B B 0 norm B - C = norm if B B 0 - C
7 6 oveq2d B = if B B 0 norm if A A 0 - C norm B - C = norm if A A 0 - C norm if B B 0 - C
8 7 fveq2d B = if B B 0 norm if A A 0 - C norm B - C = norm if A A 0 - C norm if B B 0 - C
9 oveq2 B = if B B 0 if A A 0 - B = if A A 0 - if B B 0
10 9 fveq2d B = if B B 0 norm if A A 0 - B = norm if A A 0 - if B B 0
11 8 10 breq12d B = if B B 0 norm if A A 0 - C norm B - C norm if A A 0 - B norm if A A 0 - C norm if B B 0 - C norm if A A 0 - if B B 0
12 ifhvhv0 if A A 0
13 ifhvhv0 if B B 0
14 12 13 1 norm3adifii norm if A A 0 - C norm if B B 0 - C norm if A A 0 - if B B 0
15 5 11 14 dedth2h A B norm A - C norm B - C norm A - B