Metamath Proof Explorer


Theorem norm3dif

Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 20-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion norm3dif A B C norm A - B norm A - C + norm C - B

Proof

Step Hyp Ref Expression
1 fvoveq1 A = if A A 0 norm A - B = norm if A A 0 - B
2 fvoveq1 A = if A A 0 norm A - C = norm if A A 0 - C
3 2 oveq1d A = if A A 0 norm A - C + norm C - B = norm if A A 0 - C + norm C - B
4 1 3 breq12d A = if A A 0 norm A - B norm A - C + norm C - B norm if A A 0 - B norm if A A 0 - C + norm C - B
5 oveq2 B = if B B 0 if A A 0 - B = if A A 0 - if B B 0
6 5 fveq2d B = if B B 0 norm if A A 0 - B = norm if A A 0 - if B B 0
7 oveq2 B = if B B 0 C - B = C - if B B 0
8 7 fveq2d B = if B B 0 norm C - B = norm C - if B B 0
9 8 oveq2d B = if B B 0 norm if A A 0 - C + norm C - B = norm if A A 0 - C + norm C - if B B 0
10 6 9 breq12d B = if B B 0 norm if A A 0 - B norm if A A 0 - C + norm C - B norm if A A 0 - if B B 0 norm if A A 0 - C + norm C - if B B 0
11 oveq2 C = if C C 0 if A A 0 - C = if A A 0 - if C C 0
12 11 fveq2d C = if C C 0 norm if A A 0 - C = norm if A A 0 - if C C 0
13 fvoveq1 C = if C C 0 norm C - if B B 0 = norm if C C 0 - if B B 0
14 12 13 oveq12d C = if C C 0 norm if A A 0 - C + norm C - if B B 0 = norm if A A 0 - if C C 0 + norm if C C 0 - if B B 0
15 14 breq2d C = if C C 0 norm if A A 0 - if B B 0 norm if A A 0 - C + norm C - if B B 0 norm if A A 0 - if B B 0 norm if A A 0 - if C C 0 + norm if C C 0 - if B B 0
16 ifhvhv0 if A A 0
17 ifhvhv0 if B B 0
18 ifhvhv0 if C C 0
19 16 17 18 norm3difi norm if A A 0 - if B B 0 norm if A A 0 - if C C 0 + norm if C C 0 - if B B 0
20 4 10 15 19 dedth3h A B C norm A - B norm A - C + norm C - B