Metamath Proof Explorer


Theorem norm3dif2

Description: Norm of differences around common element. (Contributed by NM, 18-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion norm3dif2 A B C norm A - B norm C - A + norm C - B

Proof

Step Hyp Ref Expression
1 norm3dif A B C norm A - B norm A - C + norm C - B
2 normsub A C norm A - C = norm C - A
3 2 3adant2 A B C norm A - C = norm C - A
4 3 oveq1d A B C norm A - C + norm C - B = norm C - A + norm C - B
5 1 4 breqtrd A B C norm A - B norm C - A + norm C - B