Metamath Proof Explorer


Theorem norm3lemt

Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion norm3lemt A B C D norm A - C < D 2 norm C - B < D 2 norm A - B < D

Proof

Step Hyp Ref Expression
1 fvoveq1 A = if A A 0 norm A - C = norm if A A 0 - C
2 1 breq1d A = if A A 0 norm A - C < D 2 norm if A A 0 - C < D 2
3 2 anbi1d A = if A A 0 norm A - C < D 2 norm C - B < D 2 norm if A A 0 - C < D 2 norm C - B < D 2
4 fvoveq1 A = if A A 0 norm A - B = norm if A A 0 - B
5 4 breq1d A = if A A 0 norm A - B < D norm if A A 0 - B < D
6 3 5 imbi12d A = if A A 0 norm A - C < D 2 norm C - B < D 2 norm A - B < D norm if A A 0 - C < D 2 norm C - B < D 2 norm if A A 0 - B < D
7 oveq2 B = if B B 0 C - B = C - if B B 0
8 7 fveq2d B = if B B 0 norm C - B = norm C - if B B 0
9 8 breq1d B = if B B 0 norm C - B < D 2 norm C - if B B 0 < D 2
10 9 anbi2d B = if B B 0 norm if A A 0 - C < D 2 norm C - B < D 2 norm if A A 0 - C < D 2 norm C - if B B 0 < D 2
11 oveq2 B = if B B 0 if A A 0 - B = if A A 0 - if B B 0
12 11 fveq2d B = if B B 0 norm if A A 0 - B = norm if A A 0 - if B B 0
13 12 breq1d B = if B B 0 norm if A A 0 - B < D norm if A A 0 - if B B 0 < D
14 10 13 imbi12d B = if B B 0 norm if A A 0 - C < D 2 norm C - B < D 2 norm if A A 0 - B < D norm if A A 0 - C < D 2 norm C - if B B 0 < D 2 norm if A A 0 - if B B 0 < D
15 oveq2 C = if C C 0 if A A 0 - C = if A A 0 - if C C 0
16 15 fveq2d C = if C C 0 norm if A A 0 - C = norm if A A 0 - if C C 0
17 16 breq1d C = if C C 0 norm if A A 0 - C < D 2 norm if A A 0 - if C C 0 < D 2
18 fvoveq1 C = if C C 0 norm C - if B B 0 = norm if C C 0 - if B B 0
19 18 breq1d C = if C C 0 norm C - if B B 0 < D 2 norm if C C 0 - if B B 0 < D 2
20 17 19 anbi12d C = if C C 0 norm if A A 0 - C < D 2 norm C - if B B 0 < D 2 norm if A A 0 - if C C 0 < D 2 norm if C C 0 - if B B 0 < D 2
21 20 imbi1d C = if C C 0 norm if A A 0 - C < D 2 norm C - if B B 0 < D 2 norm if A A 0 - if B B 0 < D norm if A A 0 - if C C 0 < D 2 norm if C C 0 - if B B 0 < D 2 norm if A A 0 - if B B 0 < D
22 oveq1 D = if D D 2 D 2 = if D D 2 2
23 22 breq2d D = if D D 2 norm if A A 0 - if C C 0 < D 2 norm if A A 0 - if C C 0 < if D D 2 2
24 22 breq2d D = if D D 2 norm if C C 0 - if B B 0 < D 2 norm if C C 0 - if B B 0 < if D D 2 2
25 23 24 anbi12d D = if D D 2 norm if A A 0 - if C C 0 < D 2 norm if C C 0 - if B B 0 < D 2 norm if A A 0 - if C C 0 < if D D 2 2 norm if C C 0 - if B B 0 < if D D 2 2
26 breq2 D = if D D 2 norm if A A 0 - if B B 0 < D norm if A A 0 - if B B 0 < if D D 2
27 25 26 imbi12d D = if D D 2 norm if A A 0 - if C C 0 < D 2 norm if C C 0 - if B B 0 < D 2 norm if A A 0 - if B B 0 < D norm if A A 0 - if C C 0 < if D D 2 2 norm if C C 0 - if B B 0 < if D D 2 2 norm if A A 0 - if B B 0 < if D D 2
28 ifhvhv0 if A A 0
29 ifhvhv0 if B B 0
30 ifhvhv0 if C C 0
31 2re 2
32 31 elimel if D D 2
33 28 29 30 32 norm3lem norm if A A 0 - if C C 0 < if D D 2 2 norm if C C 0 - if B B 0 < if D D 2 2 norm if A A 0 - if B B 0 < if D D 2
34 6 14 21 27 33 dedth4h A B C D norm A - C < D 2 norm C - B < D 2 norm A - B < D