Metamath Proof Explorer


Theorem normlem1

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 22-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
normlem1.4 R
normlem1.5 S = 1
Assertion normlem1 F - S R G ih F - S R G = F ih F + S R F ih G + S R G ih F + R 2 G ih G

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 normlem1.4 R
5 normlem1.5 S = 1
6 4 recni R
7 1 6 mulcli S R
8 7 2 3 normlem0 F - S R G ih F - S R G = F ih F + S R F ih G + S R G ih F + S R S R G ih G
9 1 6 cjmuli S R = S R
10 6 cjrebi R R = R
11 4 10 mpbi R = R
12 11 oveq2i S R = S R
13 9 12 eqtri S R = S R
14 13 negeqi S R = S R
15 1 cjcli S
16 15 6 mulneg2i S R = S R
17 14 16 eqtr4i S R = S R
18 17 oveq1i S R F ih G = S R F ih G
19 18 oveq2i F ih F + S R F ih G = F ih F + S R F ih G
20 1 6 mulneg2i S R = S R
21 20 eqcomi S R = S R
22 21 oveq1i S R G ih F = S R G ih F
23 9 oveq2i S R S R = S R S R
24 6 cjcli R
25 1 6 15 24 mul4i S R S R = S S R R
26 5 oveq1i S 2 = 1 2
27 1 absvalsqi S 2 = S S
28 sq1 1 2 = 1
29 26 27 28 3eqtr3i S S = 1
30 11 oveq2i R R = R R
31 29 30 oveq12i S S R R = 1 R R
32 6 6 mulcli R R
33 32 mulid2i 1 R R = R R
34 31 33 eqtri S S R R = R R
35 25 34 eqtri S R S R = R R
36 23 35 eqtri S R S R = R R
37 6 sqvali R 2 = R R
38 36 37 eqtr4i S R S R = R 2
39 38 oveq1i S R S R G ih G = R 2 G ih G
40 22 39 oveq12i S R G ih F + S R S R G ih G = S R G ih F + R 2 G ih G
41 19 40 oveq12i F ih F + S R F ih G + S R G ih F + S R S R G ih G = F ih F + S R F ih G + S R G ih F + R 2 G ih G
42 8 41 eqtri F - S R G ih F - S R G = F ih F + S R F ih G + S R G ih F + R 2 G ih G