Metamath Proof Explorer


Theorem normlem9at

Description: Lemma used to derive properties of norm. Part of Remark 3.4(B) of Beran p. 98. (Contributed by NM, 10-May-2005) (New usage is discouraged.)

Ref Expression
Assertion normlem9at A B A - B ih A - B = A ih A + B ih B - A ih B + B ih A

Proof

Step Hyp Ref Expression
1 oveq1 A = if A A 0 A - B = if A A 0 - B
2 1 1 oveq12d A = if A A 0 A - B ih A - B = if A A 0 - B ih if A A 0 - B
3 id A = if A A 0 A = if A A 0
4 3 3 oveq12d A = if A A 0 A ih A = if A A 0 ih if A A 0
5 4 oveq1d A = if A A 0 A ih A + B ih B = if A A 0 ih if A A 0 + B ih B
6 oveq1 A = if A A 0 A ih B = if A A 0 ih B
7 oveq2 A = if A A 0 B ih A = B ih if A A 0
8 6 7 oveq12d A = if A A 0 A ih B + B ih A = if A A 0 ih B + B ih if A A 0
9 5 8 oveq12d A = if A A 0 A ih A + B ih B - A ih B + B ih A = if A A 0 ih if A A 0 + B ih B - if A A 0 ih B + B ih if A A 0
10 2 9 eqeq12d A = if A A 0 A - B ih A - B = A ih A + B ih B - A ih B + B ih A if A A 0 - B ih if A A 0 - B = if A A 0 ih if A A 0 + B ih B - if A A 0 ih B + B ih if A A 0
11 oveq2 B = if B B 0 if A A 0 - B = if A A 0 - if B B 0
12 11 11 oveq12d B = if B B 0 if A A 0 - B ih if A A 0 - B = if A A 0 - if B B 0 ih if A A 0 - if B B 0
13 id B = if B B 0 B = if B B 0
14 13 13 oveq12d B = if B B 0 B ih B = if B B 0 ih if B B 0
15 14 oveq2d B = if B B 0 if A A 0 ih if A A 0 + B ih B = if A A 0 ih if A A 0 + if B B 0 ih if B B 0
16 oveq2 B = if B B 0 if A A 0 ih B = if A A 0 ih if B B 0
17 oveq1 B = if B B 0 B ih if A A 0 = if B B 0 ih if A A 0
18 16 17 oveq12d B = if B B 0 if A A 0 ih B + B ih if A A 0 = if A A 0 ih if B B 0 + if B B 0 ih if A A 0
19 15 18 oveq12d B = if B B 0 if A A 0 ih if A A 0 + B ih B - if A A 0 ih B + B ih if A A 0 = if A A 0 ih if A A 0 + if B B 0 ih if B B 0 - if A A 0 ih if B B 0 + if B B 0 ih if A A 0
20 12 19 eqeq12d B = if B B 0 if A A 0 - B ih if A A 0 - B = if A A 0 ih if A A 0 + B ih B - if A A 0 ih B + B ih if A A 0 if A A 0 - if B B 0 ih if A A 0 - if B B 0 = if A A 0 ih if A A 0 + if B B 0 ih if B B 0 - if A A 0 ih if B B 0 + if B B 0 ih if A A 0
21 ifhvhv0 if A A 0
22 ifhvhv0 if B B 0
23 21 22 21 22 normlem9 if A A 0 - if B B 0 ih if A A 0 - if B B 0 = if A A 0 ih if A A 0 + if B B 0 ih if B B 0 - if A A 0 ih if B B 0 + if B B 0 ih if A A 0
24 10 20 23 dedth2h A B A - B ih A - B = A ih A + B ih B - A ih B + B ih A