Metamath Proof Explorer


Theorem normpar2i

Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of Beran p. 100. (Contributed by NM, 5-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normpar2.1 A
normpar2.2 B
normpar2.3 C
Assertion normpar2i norm A - B 2 = 2 norm A - C 2 + 2 norm B - C 2 - norm A + B - 2 C 2

Proof

Step Hyp Ref Expression
1 normpar2.1 A
2 normpar2.2 B
3 normpar2.3 C
4 1 2 hvaddcli A + B
5 2cn 2
6 5 3 hvmulcli 2 C
7 4 6 hvsubcli A + B - 2 C
8 7 normcli norm A + B - 2 C
9 8 resqcli norm A + B - 2 C 2
10 9 recni norm A + B - 2 C 2
11 1 2 hvsubcli A - B
12 11 normcli norm A - B
13 12 resqcli norm A - B 2
14 13 recni norm A - B 2
15 4cn 4
16 1 3 hvsubcli A - C
17 16 normcli norm A - C
18 17 resqcli norm A - C 2
19 18 recni norm A - C 2
20 15 19 mulcli 4 norm A - C 2
21 2 3 hvsubcli B - C
22 21 normcli norm B - C
23 22 resqcli norm B - C 2
24 23 recni norm B - C 2
25 15 24 mulcli 4 norm B - C 2
26 2ne0 2 0
27 20 25 5 26 divdiri 4 norm A - C 2 + 4 norm B - C 2 2 = 4 norm A - C 2 2 + 4 norm B - C 2 2
28 20 25 addcomi 4 norm A - C 2 + 4 norm B - C 2 = 4 norm B - C 2 + 4 norm A - C 2
29 neg1cn 1
30 29 6 hvmulcli -1 2 C
31 29 11 hvmulcli -1 A - B
32 4 30 31 hvadd32i A + B + -1 2 C + -1 A - B = A + B + -1 A - B + -1 2 C
33 4 6 hvsubvali A + B - 2 C = A + B + -1 2 C
34 33 oveq1i A + B - 2 C + -1 A - B = A + B + -1 2 C + -1 A - B
35 5 2 hvmulcli 2 B
36 35 6 hvsubvali 2 B - 2 C = 2 B + -1 2 C
37 1 2 hvcomi A + B = B + A
38 1 2 hvnegdii -1 A - B = B - A
39 37 38 oveq12i A + B + -1 A - B = B + A + B - A
40 2 1 hvsubcan2i B + A + B - A = 2 B
41 39 40 eqtri A + B + -1 A - B = 2 B
42 41 oveq1i A + B + -1 A - B + -1 2 C = 2 B + -1 2 C
43 36 42 eqtr4i 2 B - 2 C = A + B + -1 A - B + -1 2 C
44 32 34 43 3eqtr4i A + B - 2 C + -1 A - B = 2 B - 2 C
45 7 11 hvsubvali A + B - 2 C - A - B = A + B - 2 C + -1 A - B
46 5 2 3 hvsubdistr1i 2 B - C = 2 B - 2 C
47 44 45 46 3eqtr4i A + B - 2 C - A - B = 2 B - C
48 47 fveq2i norm A + B - 2 C - A - B = norm 2 B - C
49 5 21 norm-iii-i norm 2 B - C = 2 norm B - C
50 0le2 0 2
51 2re 2
52 51 absidi 0 2 2 = 2
53 50 52 ax-mp 2 = 2
54 53 oveq1i 2 norm B - C = 2 norm B - C
55 48 49 54 3eqtri norm A + B - 2 C - A - B = 2 norm B - C
56 55 oveq1i norm A + B - 2 C - A - B 2 = 2 norm B - C 2
57 22 recni norm B - C
58 5 57 sqmuli 2 norm B - C 2 = 2 2 norm B - C 2
59 sq2 2 2 = 4
60 59 oveq1i 2 2 norm B - C 2 = 4 norm B - C 2
61 56 58 60 3eqtri norm A + B - 2 C - A - B 2 = 4 norm B - C 2
62 1 2 hvsubcan2i A + B + A - B = 2 A
63 62 oveq1i A + B + A - B + -1 2 C = 2 A + -1 2 C
64 4 30 11 hvadd32i A + B + -1 2 C + A - B = A + B + A - B + -1 2 C
65 5 1 hvmulcli 2 A
66 65 6 hvsubvali 2 A - 2 C = 2 A + -1 2 C
67 63 64 66 3eqtr4i A + B + -1 2 C + A - B = 2 A - 2 C
68 33 oveq1i A + B - 2 C + A - B = A + B + -1 2 C + A - B
69 5 1 3 hvsubdistr1i 2 A - C = 2 A - 2 C
70 67 68 69 3eqtr4i A + B - 2 C + A - B = 2 A - C
71 70 fveq2i norm A + B - 2 C + A - B = norm 2 A - C
72 5 16 norm-iii-i norm 2 A - C = 2 norm A - C
73 53 oveq1i 2 norm A - C = 2 norm A - C
74 71 72 73 3eqtri norm A + B - 2 C + A - B = 2 norm A - C
75 74 oveq1i norm A + B - 2 C + A - B 2 = 2 norm A - C 2
76 17 recni norm A - C
77 5 76 sqmuli 2 norm A - C 2 = 2 2 norm A - C 2
78 59 oveq1i 2 2 norm A - C 2 = 4 norm A - C 2
79 75 77 78 3eqtri norm A + B - 2 C + A - B 2 = 4 norm A - C 2
80 61 79 oveq12i norm A + B - 2 C - A - B 2 + norm A + B - 2 C + A - B 2 = 4 norm B - C 2 + 4 norm A - C 2
81 28 80 eqtr4i 4 norm A - C 2 + 4 norm B - C 2 = norm A + B - 2 C - A - B 2 + norm A + B - 2 C + A - B 2
82 7 11 normpari norm A + B - 2 C - A - B 2 + norm A + B - 2 C + A - B 2 = 2 norm A + B - 2 C 2 + 2 norm A - B 2
83 81 82 eqtri 4 norm A - C 2 + 4 norm B - C 2 = 2 norm A + B - 2 C 2 + 2 norm A - B 2
84 83 oveq1i 4 norm A - C 2 + 4 norm B - C 2 2 = 2 norm A + B - 2 C 2 + 2 norm A - B 2 2
85 5 10 mulcli 2 norm A + B - 2 C 2
86 5 14 mulcli 2 norm A - B 2
87 85 86 5 26 divdiri 2 norm A + B - 2 C 2 + 2 norm A - B 2 2 = 2 norm A + B - 2 C 2 2 + 2 norm A - B 2 2
88 10 5 26 divcan3i 2 norm A + B - 2 C 2 2 = norm A + B - 2 C 2
89 14 5 26 divcan3i 2 norm A - B 2 2 = norm A - B 2
90 88 89 oveq12i 2 norm A + B - 2 C 2 2 + 2 norm A - B 2 2 = norm A + B - 2 C 2 + norm A - B 2
91 84 87 90 3eqtri 4 norm A - C 2 + 4 norm B - C 2 2 = norm A + B - 2 C 2 + norm A - B 2
92 15 19 5 26 div23i 4 norm A - C 2 2 = 4 2 norm A - C 2
93 4d2e2 4 2 = 2
94 93 oveq1i 4 2 norm A - C 2 = 2 norm A - C 2
95 92 94 eqtri 4 norm A - C 2 2 = 2 norm A - C 2
96 15 24 5 26 div23i 4 norm B - C 2 2 = 4 2 norm B - C 2
97 93 oveq1i 4 2 norm B - C 2 = 2 norm B - C 2
98 96 97 eqtri 4 norm B - C 2 2 = 2 norm B - C 2
99 95 98 oveq12i 4 norm A - C 2 2 + 4 norm B - C 2 2 = 2 norm A - C 2 + 2 norm B - C 2
100 27 91 99 3eqtr3i norm A + B - 2 C 2 + norm A - B 2 = 2 norm A - C 2 + 2 norm B - C 2
101 10 14 100 mvlladdi norm A - B 2 = 2 norm A - C 2 + 2 norm B - C 2 - norm A + B - 2 C 2