Metamath Proof Explorer


Theorem normpari

Description: Parallelogram law for norms. Remark 3.4(B) of Beran p. 98. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normpar.1 A
normpar.2 B
Assertion normpari norm A - B 2 + norm A + B 2 = 2 norm A 2 + 2 norm B 2

Proof

Step Hyp Ref Expression
1 normpar.1 A
2 normpar.2 B
3 1 2 hvsubcli A - B
4 3 normsqi norm A - B 2 = A - B ih A - B
5 1 2 hvaddcli A + B
6 5 normsqi norm A + B 2 = A + B ih A + B
7 4 6 oveq12i norm A - B 2 + norm A + B 2 = A - B ih A - B + A + B ih A + B
8 1 normsqi norm A 2 = A ih A
9 8 oveq2i 2 norm A 2 = 2 A ih A
10 1 1 hicli A ih A
11 10 2timesi 2 A ih A = A ih A + A ih A
12 9 11 eqtri 2 norm A 2 = A ih A + A ih A
13 2 normsqi norm B 2 = B ih B
14 13 oveq2i 2 norm B 2 = 2 B ih B
15 2 2 hicli B ih B
16 15 2timesi 2 B ih B = B ih B + B ih B
17 14 16 eqtri 2 norm B 2 = B ih B + B ih B
18 12 17 oveq12i 2 norm A 2 + 2 norm B 2 = A ih A + A ih A + B ih B + B ih B
19 1 2 1 2 normlem9 A - B ih A - B = A ih A + B ih B - A ih B + B ih A
20 10 15 addcli A ih A + B ih B
21 1 2 hicli A ih B
22 2 1 hicli B ih A
23 21 22 addcli A ih B + B ih A
24 20 23 negsubi A ih A + B ih B + A ih B + B ih A = A ih A + B ih B - A ih B + B ih A
25 19 24 eqtr4i A - B ih A - B = A ih A + B ih B + A ih B + B ih A
26 1 2 1 2 normlem8 A + B ih A + B = A ih A + B ih B + A ih B + B ih A
27 25 26 oveq12i A - B ih A - B + A + B ih A + B = A ih A + B ih B + A ih B + B ih A + A ih A + B ih B + A ih B + B ih A
28 23 negcli A ih B + B ih A
29 20 28 20 23 add42i A ih A + B ih B + A ih B + B ih A + A ih A + B ih B + A ih B + B ih A = A ih A + B ih B + A ih A + B ih B + A ih B + B ih A + A ih B + B ih A
30 23 negidi A ih B + B ih A + A ih B + B ih A = 0
31 30 oveq2i A ih A + B ih B + A ih A + B ih B + A ih B + B ih A + A ih B + B ih A = A ih A + B ih B + A ih A + B ih B + 0
32 20 20 addcli A ih A + B ih B + A ih A + B ih B
33 32 addid1i A ih A + B ih B + A ih A + B ih B + 0 = A ih A + B ih B + A ih A + B ih B
34 10 15 10 15 add4i A ih A + B ih B + A ih A + B ih B = A ih A + A ih A + B ih B + B ih B
35 31 33 34 3eqtri A ih A + B ih B + A ih A + B ih B + A ih B + B ih A + A ih B + B ih A = A ih A + A ih A + B ih B + B ih B
36 27 29 35 3eqtri A - B ih A - B + A + B ih A + B = A ih A + A ih A + B ih B + B ih B
37 18 36 eqtr4i 2 norm A 2 + 2 norm B 2 = A - B ih A - B + A + B ih A + B
38 7 37 eqtr4i norm A - B 2 + norm A + B 2 = 2 norm A 2 + 2 norm B 2