Metamath Proof Explorer


Theorem normpythi

Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normsub.1 A
normsub.2 B
Assertion normpythi A ih B = 0 norm A + B 2 = norm A 2 + norm B 2

Proof

Step Hyp Ref Expression
1 normsub.1 A
2 normsub.2 B
3 1 2 1 2 normlem8 A + B ih A + B = A ih A + B ih B + A ih B + B ih A
4 id A ih B = 0 A ih B = 0
5 orthcom A B A ih B = 0 B ih A = 0
6 1 2 5 mp2an A ih B = 0 B ih A = 0
7 6 biimpi A ih B = 0 B ih A = 0
8 4 7 oveq12d A ih B = 0 A ih B + B ih A = 0 + 0
9 00id 0 + 0 = 0
10 8 9 eqtrdi A ih B = 0 A ih B + B ih A = 0
11 10 oveq2d A ih B = 0 A ih A + B ih B + A ih B + B ih A = A ih A + B ih B + 0
12 1 1 hicli A ih A
13 2 2 hicli B ih B
14 12 13 addcli A ih A + B ih B
15 14 addid1i A ih A + B ih B + 0 = A ih A + B ih B
16 11 15 eqtrdi A ih B = 0 A ih A + B ih B + A ih B + B ih A = A ih A + B ih B
17 3 16 syl5eq A ih B = 0 A + B ih A + B = A ih A + B ih B
18 1 2 hvaddcli A + B
19 18 normsqi norm A + B 2 = A + B ih A + B
20 1 normsqi norm A 2 = A ih A
21 2 normsqi norm B 2 = B ih B
22 20 21 oveq12i norm A 2 + norm B 2 = A ih A + B ih B
23 17 19 22 3eqtr4g A ih B = 0 norm A + B 2 = norm A 2 + norm B 2