Metamath Proof Explorer


Theorem normsq

Description: The square of a norm. (Contributed by NM, 12-May-2005) (New usage is discouraged.)

Ref Expression
Assertion normsq A norm A 2 = A ih A

Proof

Step Hyp Ref Expression
1 fveq2 A = if A A 0 norm A = norm if A A 0
2 1 oveq1d A = if A A 0 norm A 2 = norm if A A 0 2
3 id A = if A A 0 A = if A A 0
4 3 3 oveq12d A = if A A 0 A ih A = if A A 0 ih if A A 0
5 2 4 eqeq12d A = if A A 0 norm A 2 = A ih A norm if A A 0 2 = if A A 0 ih if A A 0
6 ifhvhv0 if A A 0
7 6 normsqi norm if A A 0 2 = if A A 0 ih if A A 0
8 5 7 dedth A norm A 2 = A ih A