Metamath Proof Explorer


Theorem normsub

Description: Swapping order of subtraction doesn't change the norm of a vector. (Contributed by NM, 14-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion normsub A B norm A - B = norm B - A

Proof

Step Hyp Ref Expression
1 fvoveq1 A = if A A 0 norm A - B = norm if A A 0 - B
2 oveq2 A = if A A 0 B - A = B - if A A 0
3 2 fveq2d A = if A A 0 norm B - A = norm B - if A A 0
4 1 3 eqeq12d A = if A A 0 norm A - B = norm B - A norm if A A 0 - B = norm B - if A A 0
5 oveq2 B = if B B 0 if A A 0 - B = if A A 0 - if B B 0
6 5 fveq2d B = if B B 0 norm if A A 0 - B = norm if A A 0 - if B B 0
7 fvoveq1 B = if B B 0 norm B - if A A 0 = norm if B B 0 - if A A 0
8 6 7 eqeq12d B = if B B 0 norm if A A 0 - B = norm B - if A A 0 norm if A A 0 - if B B 0 = norm if B B 0 - if A A 0
9 ifhvhv0 if A A 0
10 ifhvhv0 if B B 0
11 9 10 normsubi norm if A A 0 - if B B 0 = norm if B B 0 - if A A 0
12 4 8 11 dedth2h A B norm A - B = norm B - A