Metamath Proof Explorer


Theorem normsub0

Description: Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion normsub0 A B norm A - B = 0 A = B

Proof

Step Hyp Ref Expression
1 fvoveq1 A = if A A 0 norm A - B = norm if A A 0 - B
2 1 eqeq1d A = if A A 0 norm A - B = 0 norm if A A 0 - B = 0
3 eqeq1 A = if A A 0 A = B if A A 0 = B
4 2 3 bibi12d A = if A A 0 norm A - B = 0 A = B norm if A A 0 - B = 0 if A A 0 = B
5 oveq2 B = if B B 0 if A A 0 - B = if A A 0 - if B B 0
6 5 fveqeq2d B = if B B 0 norm if A A 0 - B = 0 norm if A A 0 - if B B 0 = 0
7 eqeq2 B = if B B 0 if A A 0 = B if A A 0 = if B B 0
8 6 7 bibi12d B = if B B 0 norm if A A 0 - B = 0 if A A 0 = B norm if A A 0 - if B B 0 = 0 if A A 0 = if B B 0
9 ifhvhv0 if A A 0
10 ifhvhv0 if B B 0
11 9 10 normsub0i norm if A A 0 - if B B 0 = 0 if A A 0 = if B B 0
12 4 8 11 dedth2h A B norm A - B = 0 A = B