Metamath Proof Explorer


Theorem normsubi

Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normsub.1 A
normsub.2 B
Assertion normsubi norm A - B = norm B - A

Proof

Step Hyp Ref Expression
1 normsub.1 A
2 normsub.2 B
3 neg1cn 1
4 2 1 hvsubcli B - A
5 3 4 norm-iii-i norm -1 B - A = 1 norm B - A
6 2 1 hvnegdii -1 B - A = A - B
7 6 fveq2i norm -1 B - A = norm A - B
8 ax-1cn 1
9 8 absnegi 1 = 1
10 abs1 1 = 1
11 9 10 eqtri 1 = 1
12 11 oveq1i 1 norm B - A = 1 norm B - A
13 4 normcli norm B - A
14 13 recni norm B - A
15 14 mulid2i 1 norm B - A = norm B - A
16 12 15 eqtri 1 norm B - A = norm B - A
17 5 7 16 3eqtr3i norm A - B = norm B - A