Metamath Proof Explorer


Theorem normsubi

Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normsub.1 A
normsub.2 B
Assertion normsubi normA-B=normB-A

Proof

Step Hyp Ref Expression
1 normsub.1 A
2 normsub.2 B
3 neg1cn 1
4 2 1 hvsubcli B-A
5 3 4 norm-iii-i norm-1B-A=1normB-A
6 2 1 hvnegdii -1B-A=A-B
7 6 fveq2i norm-1B-A=normA-B
8 ax-1cn 1
9 8 absnegi 1=1
10 abs1 1=1
11 9 10 eqtri 1=1
12 11 oveq1i 1normB-A=1normB-A
13 4 normcli normB-A
14 13 recni normB-A
15 14 mullidi 1normB-A=normB-A
16 12 15 eqtri 1normB-A=normB-A
17 5 7 16 3eqtr3i normA-B=normB-A