Metamath Proof Explorer


Theorem nosepon

Description: Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020)

Ref Expression
Assertion nosepon A No B No A B x On | A x B x On

Proof

Step Hyp Ref Expression
1 df-ne A x B x ¬ A x = B x
2 1 rexbii x On A x B x x On ¬ A x = B x
3 2 notbii ¬ x On A x B x ¬ x On ¬ A x = B x
4 dfral2 x On A x = B x ¬ x On ¬ A x = B x
5 3 4 bitr4i ¬ x On A x B x x On A x = B x
6 nodmord A No Ord dom A
7 nodmord B No Ord dom B
8 ordtri3or Ord dom A Ord dom B dom A dom B dom A = dom B dom B dom A
9 6 7 8 syl2an A No B No dom A dom B dom A = dom B dom B dom A
10 3orass dom A dom B dom A = dom B dom B dom A dom A dom B dom A = dom B dom B dom A
11 or12 dom A dom B dom A = dom B dom B dom A dom A = dom B dom A dom B dom B dom A
12 10 11 bitri dom A dom B dom A = dom B dom B dom A dom A = dom B dom A dom B dom B dom A
13 9 12 sylib A No B No dom A = dom B dom A dom B dom B dom A
14 13 ord A No B No ¬ dom A = dom B dom A dom B dom B dom A
15 noseponlem A No B No dom A dom B ¬ x On A x = B x
16 15 3expia A No B No dom A dom B ¬ x On A x = B x
17 noseponlem B No A No dom B dom A ¬ x On B x = A x
18 eqcom A x = B x B x = A x
19 18 ralbii x On A x = B x x On B x = A x
20 17 19 sylnibr B No A No dom B dom A ¬ x On A x = B x
21 20 3expia B No A No dom B dom A ¬ x On A x = B x
22 21 ancoms A No B No dom B dom A ¬ x On A x = B x
23 16 22 jaod A No B No dom A dom B dom B dom A ¬ x On A x = B x
24 14 23 syld A No B No ¬ dom A = dom B ¬ x On A x = B x
25 24 con4d A No B No x On A x = B x dom A = dom B
26 25 3impia A No B No x On A x = B x dom A = dom B
27 ordsson Ord dom A dom A On
28 ssralv dom A On x On A x = B x x dom A A x = B x
29 6 27 28 3syl A No x On A x = B x x dom A A x = B x
30 29 adantr A No B No x On A x = B x x dom A A x = B x
31 30 3impia A No B No x On A x = B x x dom A A x = B x
32 nofun A No Fun A
33 32 3ad2ant1 A No B No x On A x = B x Fun A
34 nofun B No Fun B
35 34 3ad2ant2 A No B No x On A x = B x Fun B
36 eqfunfv Fun A Fun B A = B dom A = dom B x dom A A x = B x
37 33 35 36 syl2anc A No B No x On A x = B x A = B dom A = dom B x dom A A x = B x
38 26 31 37 mpbir2and A No B No x On A x = B x A = B
39 38 3expia A No B No x On A x = B x A = B
40 5 39 syl5bi A No B No ¬ x On A x B x A = B
41 40 necon1ad A No B No A B x On A x B x
42 41 3impia A No B No A B x On A x B x
43 onintrab2 x On A x B x x On | A x B x On
44 42 43 sylib A No B No A B x On | A x B x On