Metamath Proof Explorer


Theorem nosepssdm

Description: Given two non-equal surreals, their separator is less-than or equal to the domain of one of them. Part of Lemma 2.1.1 of Lipparini p. 3. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nosepssdm A No B No A B x On | A x B x dom A

Proof

Step Hyp Ref Expression
1 nosepne A No B No A B A x On | A x B x B x On | A x B x
2 1 neneqd A No B No A B ¬ A x On | A x B x = B x On | A x B x
3 nodmord A No Ord dom A
4 3 3ad2ant1 A No B No A B Ord dom A
5 ordn2lp Ord dom A ¬ dom A x On | A x B x x On | A x B x dom A
6 4 5 syl A No B No A B ¬ dom A x On | A x B x x On | A x B x dom A
7 imnan dom A x On | A x B x ¬ x On | A x B x dom A ¬ dom A x On | A x B x x On | A x B x dom A
8 6 7 sylibr A No B No A B dom A x On | A x B x ¬ x On | A x B x dom A
9 8 imp A No B No A B dom A x On | A x B x ¬ x On | A x B x dom A
10 ndmfv ¬ x On | A x B x dom A A x On | A x B x =
11 9 10 syl A No B No A B dom A x On | A x B x A x On | A x B x =
12 nosepeq A No B No A B dom A x On | A x B x A dom A = B dom A
13 simpl1 A No B No A B dom A x On | A x B x A No
14 ordirr Ord dom A ¬ dom A dom A
15 ndmfv ¬ dom A dom A A dom A =
16 13 3 14 15 4syl A No B No A B dom A x On | A x B x A dom A =
17 16 eqeq1d A No B No A B dom A x On | A x B x A dom A = B dom A = B dom A
18 eqcom = B dom A B dom A =
19 17 18 bitrdi A No B No A B dom A x On | A x B x A dom A = B dom A B dom A =
20 simpl2 A No B No A B dom A x On | A x B x B No
21 nofun B No Fun B
22 20 21 syl A No B No A B dom A x On | A x B x Fun B
23 nosgnn0 ¬ 1 𝑜 2 𝑜
24 norn B No ran B 1 𝑜 2 𝑜
25 20 24 syl A No B No A B dom A x On | A x B x ran B 1 𝑜 2 𝑜
26 25 sseld A No B No A B dom A x On | A x B x ran B 1 𝑜 2 𝑜
27 23 26 mtoi A No B No A B dom A x On | A x B x ¬ ran B
28 funeldmb Fun B ¬ ran B dom A dom B B dom A
29 22 27 28 syl2anc A No B No A B dom A x On | A x B x dom A dom B B dom A
30 29 necon2bbid A No B No A B dom A x On | A x B x B dom A = ¬ dom A dom B
31 nodmord B No Ord dom B
32 31 3ad2ant2 A No B No A B Ord dom B
33 ordtr1 Ord dom B dom A x On | A x B x x On | A x B x dom B dom A dom B
34 32 33 syl A No B No A B dom A x On | A x B x x On | A x B x dom B dom A dom B
35 34 expdimp A No B No A B dom A x On | A x B x x On | A x B x dom B dom A dom B
36 35 con3d A No B No A B dom A x On | A x B x ¬ dom A dom B ¬ x On | A x B x dom B
37 30 36 sylbid A No B No A B dom A x On | A x B x B dom A = ¬ x On | A x B x dom B
38 19 37 sylbid A No B No A B dom A x On | A x B x A dom A = B dom A ¬ x On | A x B x dom B
39 12 38 mpd A No B No A B dom A x On | A x B x ¬ x On | A x B x dom B
40 ndmfv ¬ x On | A x B x dom B B x On | A x B x =
41 39 40 syl A No B No A B dom A x On | A x B x B x On | A x B x =
42 11 41 eqtr4d A No B No A B dom A x On | A x B x A x On | A x B x = B x On | A x B x
43 2 42 mtand A No B No A B ¬ dom A x On | A x B x
44 nosepon A No B No A B x On | A x B x On
45 nodmon A No dom A On
46 45 3ad2ant1 A No B No A B dom A On
47 ontri1 x On | A x B x On dom A On x On | A x B x dom A ¬ dom A x On | A x B x
48 44 46 47 syl2anc A No B No A B x On | A x B x dom A ¬ dom A x On | A x B x
49 43 48 mpbird A No B No A B x On | A x B x dom A