| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nosupbnd1.1 |
|
| 2 |
|
simpl1 |
|
| 3 |
|
simpl2 |
|
| 4 |
|
simprl |
|
| 5 |
|
simpl3 |
|
| 6 |
|
simprr |
|
| 7 |
|
simp2l |
|
| 8 |
|
simp3l |
|
| 9 |
7 8
|
sseldd |
|
| 10 |
|
simpl2l |
|
| 11 |
10 4
|
sseldd |
|
| 12 |
|
sltso |
|
| 13 |
|
soasym |
|
| 14 |
12 13
|
mpan |
|
| 15 |
9 11 14
|
syl2an2r |
|
| 16 |
6 15
|
mpd |
|
| 17 |
4 16
|
jca |
|
| 18 |
1
|
nosupbnd1lem2 |
|
| 19 |
2 3 5 17 18
|
syl112anc |
|
| 20 |
1
|
nosupbnd1lem3 |
|
| 21 |
2 3 4 19 20
|
syl112anc |
|
| 22 |
21
|
neneqd |
|
| 23 |
22
|
expr |
|
| 24 |
|
imnan |
|
| 25 |
23 24
|
sylib |
|
| 26 |
25
|
nrexdv |
|
| 27 |
|
simpl3l |
|
| 28 |
|
simpl1 |
|
| 29 |
|
breq2 |
|
| 30 |
29
|
cbvrexvw |
|
| 31 |
|
breq1 |
|
| 32 |
31
|
rexbidv |
|
| 33 |
30 32
|
bitrid |
|
| 34 |
33
|
cbvralvw |
|
| 35 |
|
dfrex2 |
|
| 36 |
35
|
ralbii |
|
| 37 |
|
ralnex |
|
| 38 |
34 36 37
|
3bitri |
|
| 39 |
28 38
|
sylibr |
|
| 40 |
|
breq1 |
|
| 41 |
40
|
rexbidv |
|
| 42 |
41
|
rspcv |
|
| 43 |
27 39 42
|
sylc |
|
| 44 |
|
simpl2l |
|
| 45 |
44 27
|
sseldd |
|
| 46 |
45
|
adantr |
|
| 47 |
44
|
adantr |
|
| 48 |
|
simprl |
|
| 49 |
47 48
|
sseldd |
|
| 50 |
1
|
nosupno |
|
| 51 |
50
|
3ad2ant2 |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
adantr |
|
| 54 |
|
nodmon |
|
| 55 |
53 54
|
syl |
|
| 56 |
|
simpl3r |
|
| 57 |
56
|
adantr |
|
| 58 |
|
simpll1 |
|
| 59 |
|
simpll2 |
|
| 60 |
|
simpll3 |
|
| 61 |
|
simprr |
|
| 62 |
45 49 14
|
syl2an2r |
|
| 63 |
61 62
|
mpd |
|
| 64 |
48 63
|
jca |
|
| 65 |
58 59 60 64 18
|
syl112anc |
|
| 66 |
57 65
|
eqtr4d |
|
| 67 |
|
simplr |
|
| 68 |
|
nolt02o |
|
| 69 |
46 49 55 66 61 67 68
|
syl321anc |
|
| 70 |
69
|
expr |
|
| 71 |
70
|
ancld |
|
| 72 |
71
|
reximdva |
|
| 73 |
43 72
|
mpd |
|
| 74 |
26 73
|
mtand |
|
| 75 |
74
|
neqned |
|