Metamath Proof Explorer


Theorem notabw

Description: A class abstraction defined by a negation. Version of notab using implicit substitution, which does not require ax-10 , ax-12 . (Contributed by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypothesis notabw.1 x = y φ ψ
Assertion notabw x | ¬ φ = V y | ψ

Proof

Step Hyp Ref Expression
1 notabw.1 x = y φ ψ
2 vex x V
3 2 biantrur ¬ x y | ψ x V ¬ x y | ψ
4 df-clab x y | ψ x y ψ
5 1 bicomd x = y ψ φ
6 5 equcoms y = x ψ φ
7 6 sbievw x y ψ φ
8 4 7 bitri x y | ψ φ
9 3 8 xchnxbi ¬ φ x V ¬ x y | ψ
10 9 abbii x | ¬ φ = x | x V ¬ x y | ψ
11 df-dif V y | ψ = x | x V ¬ x y | ψ
12 10 11 eqtr4i x | ¬ φ = V y | ψ