Metamath Proof Explorer


Theorem notbi

Description: Contraposition. Theorem *4.11 of WhiteheadRussell p. 117. (Contributed by NM, 21-May-1994) (Proof shortened by Wolf Lammen, 12-Jun-2013)

Ref Expression
Assertion notbi φ ψ ¬ φ ¬ ψ

Proof

Step Hyp Ref Expression
1 id φ ψ φ ψ
2 1 notbid φ ψ ¬ φ ¬ ψ
3 id ¬ φ ¬ ψ ¬ φ ¬ ψ
4 3 con4bid ¬ φ ¬ ψ φ ψ
5 2 4 impbii φ ψ ¬ φ ¬ ψ