Metamath Proof Explorer


Theorem notbicom

Description: Commutative law for the negation of a biconditional. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypothesis notbicom.1 ¬ φ ψ
Assertion notbicom ¬ ψ φ

Proof

Step Hyp Ref Expression
1 notbicom.1 ¬ φ ψ
2 bicom ψ φ φ ψ
3 1 2 mtbir ¬ ψ φ