Metamath Proof Explorer


Theorem notnoti

Description: Inference associated with notnot . (Contributed by NM, 27-Feb-2008)

Ref Expression
Hypothesis notnoti.1 φ
Assertion notnoti ¬ ¬ φ

Proof

Step Hyp Ref Expression
1 notnoti.1 φ
2 notnot φ ¬ ¬ φ
3 1 2 ax-mp ¬ ¬ φ