Metamath Proof Explorer


Theorem notrab

Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion notrab A x A | φ = x A | ¬ φ

Proof

Step Hyp Ref Expression
1 difab x | x A x | φ = x | x A ¬ φ
2 difin A A x | φ = A x | φ
3 dfrab3 x A | φ = A x | φ
4 3 difeq2i A x A | φ = A A x | φ
5 abid2 x | x A = A
6 5 difeq1i x | x A x | φ = A x | φ
7 2 4 6 3eqtr4i A x A | φ = x | x A x | φ
8 df-rab x A | ¬ φ = x | x A ¬ φ
9 1 7 8 3eqtr4i A x A | φ = x A | ¬ φ