Metamath Proof Explorer


Theorem notzfaus

Description: In the Separation Scheme zfauscl , we require that y not occur in ph (which can be generalized to "not be free in"). Here we show special cases of A and ph that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006) (Proof shortened by BJ, 18-Nov-2023)

Ref Expression
Hypotheses notzfaus.1 A =
notzfaus.2 φ ¬ x y
Assertion notzfaus ¬ y x x y x A φ

Proof

Step Hyp Ref Expression
1 notzfaus.1 A =
2 notzfaus.2 φ ¬ x y
3 0ex V
4 3 snnz
5 1 4 eqnetri A
6 n0 A x x A
7 5 6 mpbi x x A
8 pm5.19 ¬ x y ¬ x y
9 ibar x A φ x A φ
10 9 2 bitr3di x A x A φ ¬ x y
11 10 bibi2d x A x y x A φ x y ¬ x y
12 8 11 mtbiri x A ¬ x y x A φ
13 7 12 eximii x ¬ x y x A φ
14 exnal x ¬ x y x A φ ¬ x x y x A φ
15 13 14 mpbi ¬ x x y x A φ
16 15 nex ¬ y x x y x A φ