Metamath Proof Explorer


Theorem noxpordfr

Description: Next we establish the foundedness of the relationship. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses noxpord.1 R=ab|aLbRb
noxpord.2 S=xy|xNo×NoyNo×No1stxR1sty1stx=1sty2ndxR2ndy2ndx=2ndyxy
Assertion noxpordfr SFrNo×No

Proof

Step Hyp Ref Expression
1 noxpord.1 R=ab|aLbRb
2 noxpord.2 S=xy|xNo×NoyNo×No1stxR1sty1stx=1sty2ndxR2ndy2ndx=2ndyxy
3 1 lrrecfr RFrNo
4 3 a1i RFrNo
5 2 4 4 frxp2 SFrNo×No
6 5 mptru SFrNo×No