Metamath Proof Explorer


Theorem noxpordpred

Description: Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses noxpord.1 No typesetting found for |- R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } with typecode |-
noxpord.2 S = x y | x No × No y No × No 1 st x R 1 st y 1 st x = 1 st y 2 nd x R 2 nd y 2 nd x = 2 nd y x y
Assertion noxpordpred Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> Pred ( S , ( No X. No ) , <. A , B >. ) = ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 noxpord.1 Could not format R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } : No typesetting found for |- R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } with typecode |-
2 noxpord.2 S = x y | x No × No y No × No 1 st x R 1 st y 1 st x = 1 st y 2 nd x R 2 nd y 2 nd x = 2 nd y x y
3 2 xpord2pred A No B No Pred S No × No A B = Pred R No A A × Pred R No B B A B
4 1 lrrecpred Could not format ( A e. No -> Pred ( R , No , A ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) : No typesetting found for |- ( A e. No -> Pred ( R , No , A ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-
5 4 adantr Could not format ( ( A e. No /\ B e. No ) -> Pred ( R , No , A ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> Pred ( R , No , A ) = ( ( _Left ` A ) u. ( _Right ` A ) ) ) with typecode |-
6 5 uneq1d Could not format ( ( A e. No /\ B e. No ) -> ( Pred ( R , No , A ) u. { A } ) = ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( Pred ( R , No , A ) u. { A } ) = ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) ) with typecode |-
7 1 lrrecpred Could not format ( B e. No -> Pred ( R , No , B ) = ( ( _Left ` B ) u. ( _Right ` B ) ) ) : No typesetting found for |- ( B e. No -> Pred ( R , No , B ) = ( ( _Left ` B ) u. ( _Right ` B ) ) ) with typecode |-
8 7 adantl Could not format ( ( A e. No /\ B e. No ) -> Pred ( R , No , B ) = ( ( _Left ` B ) u. ( _Right ` B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> Pred ( R , No , B ) = ( ( _Left ` B ) u. ( _Right ` B ) ) ) with typecode |-
9 8 uneq1d Could not format ( ( A e. No /\ B e. No ) -> ( Pred ( R , No , B ) u. { B } ) = ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( Pred ( R , No , B ) u. { B } ) = ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) with typecode |-
10 6 9 xpeq12d Could not format ( ( A e. No /\ B e. No ) -> ( ( Pred ( R , No , A ) u. { A } ) X. ( Pred ( R , No , B ) u. { B } ) ) = ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( Pred ( R , No , A ) u. { A } ) X. ( Pred ( R , No , B ) u. { B } ) ) = ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) ) with typecode |-
11 10 difeq1d Could not format ( ( A e. No /\ B e. No ) -> ( ( ( Pred ( R , No , A ) u. { A } ) X. ( Pred ( R , No , B ) u. { B } ) ) \ { <. A , B >. } ) = ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( ( Pred ( R , No , A ) u. { A } ) X. ( Pred ( R , No , B ) u. { B } ) ) \ { <. A , B >. } ) = ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) with typecode |-
12 3 11 eqtrd Could not format ( ( A e. No /\ B e. No ) -> Pred ( S , ( No X. No ) , <. A , B >. ) = ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> Pred ( S , ( No X. No ) , <. A , B >. ) = ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) with typecode |-