Metamath Proof Explorer


Theorem npex

Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995) (New usage is discouraged.)

Ref Expression
Assertion npex 𝑷 V

Proof

Step Hyp Ref Expression
1 nqex 𝑸 V
2 1 pwex 𝒫 𝑸 V
3 pssss x 𝑸 x 𝑸
4 3 ad2antlr x x 𝑸 y x z z < 𝑸 y z x z x y < 𝑸 z x 𝑸
5 4 ss2abi x | x x 𝑸 y x z z < 𝑸 y z x z x y < 𝑸 z x | x 𝑸
6 df-np 𝑷 = x | x x 𝑸 y x z z < 𝑸 y z x z x y < 𝑸 z
7 df-pw 𝒫 𝑸 = x | x 𝑸
8 5 6 7 3sstr4i 𝑷 𝒫 𝑸
9 2 8 ssexi 𝑷 V