Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
npncan2
Next ⟩
subsub2
Metamath Proof Explorer
Ascii
Unicode
Theorem
npncan2
Description:
Cancellation law for subtraction.
(Contributed by
Scott Fenton
, 21-Jun-2013)
Ref
Expression
Assertion
npncan2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
+
B
-
A
=
0
Proof
Step
Hyp
Ref
Expression
1
npncan
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
A
∈
ℂ
→
A
−
B
+
B
-
A
=
A
−
A
2
1
3anidm13
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
+
B
-
A
=
A
−
A
3
subid
⊢
A
∈
ℂ
→
A
−
A
=
0
4
3
adantr
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
A
=
0
5
2
4
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
+
B
-
A
=
0