Metamath Proof Explorer


Theorem npncan3

Description: Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion npncan3 A B C A B + C - A = C B

Proof

Step Hyp Ref Expression
1 simp1 A B C A
2 subcl C A C A
3 2 ancoms A C C A
4 3 3adant2 A B C C A
5 simp2 A B C B
6 addsub A C A B A + C A - B = A B + C - A
7 1 4 5 6 syl3anc A B C A + C A - B = A B + C - A
8 pncan3 A C A + C - A = C
9 8 3adant2 A B C A + C - A = C
10 9 oveq1d A B C A + C A - B = C B
11 7 10 eqtr3d A B C A B + C - A = C B