Metamath Proof Explorer


Theorem npomex

Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P. is an infinite set, the negation of Infinity implies that P. , and hence RR , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq and nsmallnq ). (Contributed by Mario Carneiro, 11-May-2013) (Revised by Mario Carneiro, 16-Nov-2014) (New usage is discouraged.)

Ref Expression
Assertion npomex A 𝑷 ω V

Proof

Step Hyp Ref Expression
1 elex A 𝑷 A V
2 prnmax A 𝑷 x A y A x < 𝑸 y
3 2 ralrimiva A 𝑷 x A y A x < 𝑸 y
4 prpssnq A 𝑷 A 𝑸
5 4 pssssd A 𝑷 A 𝑸
6 ltsonq < 𝑸 Or 𝑸
7 soss A 𝑸 < 𝑸 Or 𝑸 < 𝑸 Or A
8 5 6 7 mpisyl A 𝑷 < 𝑸 Or A
9 8 adantr A 𝑷 A Fin < 𝑸 Or A
10 simpr A 𝑷 A Fin A Fin
11 prn0 A 𝑷 A
12 11 adantr A 𝑷 A Fin A
13 fimax2g < 𝑸 Or A A Fin A x A y A ¬ x < 𝑸 y
14 9 10 12 13 syl3anc A 𝑷 A Fin x A y A ¬ x < 𝑸 y
15 ralnex y A ¬ x < 𝑸 y ¬ y A x < 𝑸 y
16 15 rexbii x A y A ¬ x < 𝑸 y x A ¬ y A x < 𝑸 y
17 rexnal x A ¬ y A x < 𝑸 y ¬ x A y A x < 𝑸 y
18 16 17 bitri x A y A ¬ x < 𝑸 y ¬ x A y A x < 𝑸 y
19 14 18 sylib A 𝑷 A Fin ¬ x A y A x < 𝑸 y
20 19 ex A 𝑷 A Fin ¬ x A y A x < 𝑸 y
21 3 20 mt2d A 𝑷 ¬ A Fin
22 nelne1 A V ¬ A Fin V Fin
23 1 21 22 syl2anc A 𝑷 V Fin
24 23 necomd A 𝑷 Fin V
25 fineqv ¬ ω V Fin = V
26 25 necon1abii Fin V ω V
27 24 26 sylib A 𝑷 ω V