Metamath Proof Explorer


Theorem nppcan

Description: Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005)

Ref Expression
Assertion nppcan A B C A B + C + B = A + C

Proof

Step Hyp Ref Expression
1 subcl A B A B
2 1 3adant3 A B C A B
3 simp3 A B C C
4 simp2 A B C B
5 2 3 4 add32d A B C A B + C + B = A B + B + C
6 npcan A B A - B + B = A
7 6 oveq1d A B A B + B + C = A + C
8 7 3adant3 A B C A B + B + C = A + C
9 5 8 eqtrd A B C A B + C + B = A + C