Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
nppcan
Next ⟩
nnpcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
nppcan
Description:
Cancellation law for subtraction.
(Contributed by
NM
, 1-Sep-2005)
Ref
Expression
Assertion
nppcan
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
C
+
B
=
A
+
C
Proof
Step
Hyp
Ref
Expression
1
subcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
∈
ℂ
2
1
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
∈
ℂ
3
simp3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
∈
ℂ
4
simp2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
∈
ℂ
5
2
3
4
add32d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
C
+
B
=
A
−
B
+
B
+
C
6
npcan
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
-
B
+
B
=
A
7
6
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
+
B
+
C
=
A
+
C
8
7
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
B
+
C
=
A
+
C
9
5
8
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
C
+
B
=
A
+
C