Metamath Proof Explorer


Theorem nppcan2

Description: Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005)

Ref Expression
Assertion nppcan2 A B C A - B + C + C = A B

Proof

Step Hyp Ref Expression
1 addcl B C B + C
2 1 3adant1 A B C B + C
3 subsub A B + C C A B + C - C = A - B + C + C
4 2 3 syld3an2 A B C A B + C - C = A - B + C + C
5 pncan B C B + C - C = B
6 5 3adant1 A B C B + C - C = B
7 6 oveq2d A B C A B + C - C = A B
8 4 7 eqtr3d A B C A - B + C + C = A B