Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
nppcan2
Next ⟩
subsub3
Metamath Proof Explorer
Ascii
Unicode
Theorem
nppcan2
Description:
Cancellation law for subtraction.
(Contributed by
NM
, 29-Sep-2005)
Ref
Expression
Assertion
nppcan2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
+
C
+
C
=
A
−
B
Proof
Step
Hyp
Ref
Expression
1
addcl
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
C
∈
ℂ
2
1
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
C
∈
ℂ
3
subsub
⊢
A
∈
ℂ
∧
B
+
C
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
C
-
C
=
A
-
B
+
C
+
C
4
2
3
syld3an2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
C
-
C
=
A
-
B
+
C
+
C
5
pncan
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
C
-
C
=
B
6
5
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
C
-
C
=
B
7
6
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
C
-
C
=
A
−
B
8
4
7
eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
+
C
+
C
=
A
−
B