Metamath Proof Explorer


Theorem nprm

Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion nprm A 2 B 2 ¬ A B

Proof

Step Hyp Ref Expression
1 eluzelz A 2 A
2 1 adantr A 2 B 2 A
3 2 zred A 2 B 2 A
4 eluz2gt1 B 2 1 < B
5 4 adantl A 2 B 2 1 < B
6 eluzelz B 2 B
7 6 adantl A 2 B 2 B
8 7 zred A 2 B 2 B
9 eluz2nn A 2 A
10 9 adantr A 2 B 2 A
11 10 nngt0d A 2 B 2 0 < A
12 ltmulgt11 A B 0 < A 1 < B A < A B
13 3 8 11 12 syl3anc A 2 B 2 1 < B A < A B
14 5 13 mpbid A 2 B 2 A < A B
15 3 14 ltned A 2 B 2 A A B
16 dvdsmul1 A B A A B
17 1 6 16 syl2an A 2 B 2 A A B
18 isprm4 A B A B 2 x 2 x A B x = A B
19 18 simprbi A B x 2 x A B x = A B
20 breq1 x = A x A B A A B
21 eqeq1 x = A x = A B A = A B
22 20 21 imbi12d x = A x A B x = A B A A B A = A B
23 22 rspcv A 2 x 2 x A B x = A B A A B A = A B
24 19 23 syl5 A 2 A B A A B A = A B
25 24 adantr A 2 B 2 A B A A B A = A B
26 17 25 mpid A 2 B 2 A B A = A B
27 26 necon3ad A 2 B 2 A A B ¬ A B
28 15 27 mpd A 2 B 2 ¬ A B