Metamath Proof Explorer


Theorem nprmi

Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses nprmi.1 A
nprmi.2 B
nprmi.3 1 < A
nprmi.4 1 < B
nprmi.5 A B = N
Assertion nprmi ¬ N

Proof

Step Hyp Ref Expression
1 nprmi.1 A
2 nprmi.2 B
3 nprmi.3 1 < A
4 nprmi.4 1 < B
5 nprmi.5 A B = N
6 eluz2b2 A 2 A 1 < A
7 eluz2b2 B 2 B 1 < B
8 nprm A 2 B 2 ¬ A B
9 6 7 8 syl2anbr A 1 < A B 1 < B ¬ A B
10 1 3 2 4 9 mp4an ¬ A B
11 5 eleq1i A B N
12 10 11 mtbi ¬ N