Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
nprrel12
Next ⟩
nprrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
nprrel12
Description:
Proper classes are not related via any relation.
(Contributed by
AV
, 29-Oct-2021)
Ref
Expression
Hypothesis
nprrel12.1
⊢
Rel
⁡
R
Assertion
nprrel12
⊢
¬
A
∈
V
∧
B
∈
V
→
¬
A
R
B
Proof
Step
Hyp
Ref
Expression
1
nprrel12.1
⊢
Rel
⁡
R
2
1
brrelex12i
⊢
A
R
B
→
A
∈
V
∧
B
∈
V
3
2
con3i
⊢
¬
A
∈
V
∧
B
∈
V
→
¬
A
R
B