Metamath Proof Explorer


Theorem nqereq

Description: The function /Q acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion nqereq A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B / 𝑸 A = / 𝑸 B

Proof

Step Hyp Ref Expression
1 nqercl A 𝑵 × 𝑵 / 𝑸 A 𝑸
2 1 3ad2ant1 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B / 𝑸 A 𝑸
3 nqercl B 𝑵 × 𝑵 / 𝑸 B 𝑸
4 3 3ad2ant2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B / 𝑸 B 𝑸
5 enqer ~ 𝑸 Er 𝑵 × 𝑵
6 5 a1i A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B ~ 𝑸 Er 𝑵 × 𝑵
7 nqerrel A 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A
8 7 3ad2ant1 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B A ~ 𝑸 / 𝑸 A
9 simp3 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B A ~ 𝑸 B
10 6 8 9 ertr3d A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B / 𝑸 A ~ 𝑸 B
11 nqerrel B 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B
12 11 3ad2ant2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B B ~ 𝑸 / 𝑸 B
13 6 10 12 ertrd A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B / 𝑸 A ~ 𝑸 / 𝑸 B
14 enqeq / 𝑸 A 𝑸 / 𝑸 B 𝑸 / 𝑸 A ~ 𝑸 / 𝑸 B / 𝑸 A = / 𝑸 B
15 2 4 13 14 syl3anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B / 𝑸 A = / 𝑸 B
16 15 3expia A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B / 𝑸 A = / 𝑸 B
17 5 a1i A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A = / 𝑸 B ~ 𝑸 Er 𝑵 × 𝑵
18 7 adantr A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A = / 𝑸 B A ~ 𝑸 / 𝑸 A
19 simprr A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A = / 𝑸 B / 𝑸 A = / 𝑸 B
20 18 19 breqtrd A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A = / 𝑸 B A ~ 𝑸 / 𝑸 B
21 11 ad2antrl A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A = / 𝑸 B B ~ 𝑸 / 𝑸 B
22 17 20 21 ertr4d A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A = / 𝑸 B A ~ 𝑸 B
23 22 expr A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A = / 𝑸 B A ~ 𝑸 B
24 16 23 impbid A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B / 𝑸 A = / 𝑸 B