Metamath Proof Explorer


Theorem nqereu

Description: There is a unique element of Q. equivalent to each element of N. X. N. . (Contributed by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion nqereu A 𝑵 × 𝑵 ∃! x 𝑸 x ~ 𝑸 A

Proof

Step Hyp Ref Expression
1 elxp2 A 𝑵 × 𝑵 a 𝑵 b 𝑵 A = a b
2 pion b 𝑵 b On
3 suceloni b On suc b On
4 2 3 syl b 𝑵 suc b On
5 vex b V
6 5 sucid b suc b
7 eleq2 y = suc b b y b suc b
8 7 rspcev suc b On b suc b y On b y
9 4 6 8 sylancl b 𝑵 y On b y
10 9 adantl a 𝑵 b 𝑵 y On b y
11 elequ2 y = m b y b m
12 11 imbi1d y = m b y x 𝑸 x ~ 𝑸 a b b m x 𝑸 x ~ 𝑸 a b
13 12 2ralbidv y = m a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b a 𝑵 b 𝑵 b m x 𝑸 x ~ 𝑸 a b
14 opeq1 c = a c d = a d
15 14 breq2d c = a x ~ 𝑸 c d x ~ 𝑸 a d
16 15 rexbidv c = a x 𝑸 x ~ 𝑸 c d x 𝑸 x ~ 𝑸 a d
17 16 imbi2d c = a d m x 𝑸 x ~ 𝑸 c d d m x 𝑸 x ~ 𝑸 a d
18 elequ1 d = b d m b m
19 opeq2 d = b a d = a b
20 19 breq2d d = b x ~ 𝑸 a d x ~ 𝑸 a b
21 20 rexbidv d = b x 𝑸 x ~ 𝑸 a d x 𝑸 x ~ 𝑸 a b
22 18 21 imbi12d d = b d m x 𝑸 x ~ 𝑸 a d b m x 𝑸 x ~ 𝑸 a b
23 17 22 cbvral2vw c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d a 𝑵 b 𝑵 b m x 𝑸 x ~ 𝑸 a b
24 23 ralbii m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d m y a 𝑵 b 𝑵 b m x 𝑸 x ~ 𝑸 a b
25 rexnal z 𝑵 × 𝑵 ¬ a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b ¬ z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b
26 pm4.63 ¬ a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b a b ~ 𝑸 z 2 nd z < 𝑵 b
27 xp2nd z 𝑵 × 𝑵 2 nd z 𝑵
28 ltpiord 2 nd z 𝑵 b 𝑵 2 nd z < 𝑵 b 2 nd z b
29 28 ancoms b 𝑵 2 nd z 𝑵 2 nd z < 𝑵 b 2 nd z b
30 27 29 sylan2 b 𝑵 z 𝑵 × 𝑵 2 nd z < 𝑵 b 2 nd z b
31 30 adantll a 𝑵 b 𝑵 z 𝑵 × 𝑵 2 nd z < 𝑵 b 2 nd z b
32 31 anbi2d a 𝑵 b 𝑵 z 𝑵 × 𝑵 a b ~ 𝑸 z 2 nd z < 𝑵 b a b ~ 𝑸 z 2 nd z b
33 26 32 syl5bb a 𝑵 b 𝑵 z 𝑵 × 𝑵 ¬ a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b a b ~ 𝑸 z 2 nd z b
34 33 rexbidva a 𝑵 b 𝑵 z 𝑵 × 𝑵 ¬ a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b z 𝑵 × 𝑵 a b ~ 𝑸 z 2 nd z b
35 25 34 bitr3id a 𝑵 b 𝑵 ¬ z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b z 𝑵 × 𝑵 a b ~ 𝑸 z 2 nd z b
36 xp1st z 𝑵 × 𝑵 1 st z 𝑵
37 elequ2 m = b d m d b
38 37 imbi1d m = b d m x 𝑸 x ~ 𝑸 c d d b x 𝑸 x ~ 𝑸 c d
39 38 2ralbidv m = b c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d c 𝑵 d 𝑵 d b x 𝑸 x ~ 𝑸 c d
40 39 rspccv m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y c 𝑵 d 𝑵 d b x 𝑸 x ~ 𝑸 c d
41 opeq1 c = 1 st z c d = 1 st z d
42 41 breq2d c = 1 st z x ~ 𝑸 c d x ~ 𝑸 1 st z d
43 42 rexbidv c = 1 st z x 𝑸 x ~ 𝑸 c d x 𝑸 x ~ 𝑸 1 st z d
44 43 imbi2d c = 1 st z d b x 𝑸 x ~ 𝑸 c d d b x 𝑸 x ~ 𝑸 1 st z d
45 44 ralbidv c = 1 st z d 𝑵 d b x 𝑸 x ~ 𝑸 c d d 𝑵 d b x 𝑸 x ~ 𝑸 1 st z d
46 45 rspccv c 𝑵 d 𝑵 d b x 𝑸 x ~ 𝑸 c d 1 st z 𝑵 d 𝑵 d b x 𝑸 x ~ 𝑸 1 st z d
47 eleq1 d = 2 nd z d b 2 nd z b
48 opeq2 d = 2 nd z 1 st z d = 1 st z 2 nd z
49 48 breq2d d = 2 nd z x ~ 𝑸 1 st z d x ~ 𝑸 1 st z 2 nd z
50 49 rexbidv d = 2 nd z x 𝑸 x ~ 𝑸 1 st z d x 𝑸 x ~ 𝑸 1 st z 2 nd z
51 47 50 imbi12d d = 2 nd z d b x 𝑸 x ~ 𝑸 1 st z d 2 nd z b x 𝑸 x ~ 𝑸 1 st z 2 nd z
52 51 rspccv d 𝑵 d b x 𝑸 x ~ 𝑸 1 st z d 2 nd z 𝑵 2 nd z b x 𝑸 x ~ 𝑸 1 st z 2 nd z
53 46 52 syl6 c 𝑵 d 𝑵 d b x 𝑸 x ~ 𝑸 c d 1 st z 𝑵 2 nd z 𝑵 2 nd z b x 𝑸 x ~ 𝑸 1 st z 2 nd z
54 40 53 syl6 m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y 1 st z 𝑵 2 nd z 𝑵 2 nd z b x 𝑸 x ~ 𝑸 1 st z 2 nd z
55 54 imp m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y 1 st z 𝑵 2 nd z 𝑵 2 nd z b x 𝑸 x ~ 𝑸 1 st z 2 nd z
56 36 55 syl5 m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 2 nd z 𝑵 2 nd z b x 𝑸 x ~ 𝑸 1 st z 2 nd z
57 27 56 mpdi m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 2 nd z b x 𝑸 x ~ 𝑸 1 st z 2 nd z
58 57 3imp m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 2 nd z b x 𝑸 x ~ 𝑸 1 st z 2 nd z
59 1st2nd2 z 𝑵 × 𝑵 z = 1 st z 2 nd z
60 59 breq2d z 𝑵 × 𝑵 x ~ 𝑸 z x ~ 𝑸 1 st z 2 nd z
61 60 rexbidv z 𝑵 × 𝑵 x 𝑸 x ~ 𝑸 z x 𝑸 x ~ 𝑸 1 st z 2 nd z
62 61 3ad2ant2 m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 2 nd z b x 𝑸 x ~ 𝑸 z x 𝑸 x ~ 𝑸 1 st z 2 nd z
63 58 62 mpbird m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 2 nd z b x 𝑸 x ~ 𝑸 z
64 enqer ~ 𝑸 Er 𝑵 × 𝑵
65 64 a1i a b ~ 𝑸 z x ~ 𝑸 z ~ 𝑸 Er 𝑵 × 𝑵
66 simpr a b ~ 𝑸 z x ~ 𝑸 z x ~ 𝑸 z
67 simpl a b ~ 𝑸 z x ~ 𝑸 z a b ~ 𝑸 z
68 65 66 67 ertr4d a b ~ 𝑸 z x ~ 𝑸 z x ~ 𝑸 a b
69 68 ex a b ~ 𝑸 z x ~ 𝑸 z x ~ 𝑸 a b
70 69 reximdv a b ~ 𝑸 z x 𝑸 x ~ 𝑸 z x 𝑸 x ~ 𝑸 a b
71 63 70 syl5com m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 2 nd z b a b ~ 𝑸 z x 𝑸 x ~ 𝑸 a b
72 71 3expia m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 2 nd z b a b ~ 𝑸 z x 𝑸 x ~ 𝑸 a b
73 72 impcomd m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 a b ~ 𝑸 z 2 nd z b x 𝑸 x ~ 𝑸 a b
74 73 rexlimdva m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 a b ~ 𝑸 z 2 nd z b x 𝑸 x ~ 𝑸 a b
75 74 ex m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y z 𝑵 × 𝑵 a b ~ 𝑸 z 2 nd z b x 𝑸 x ~ 𝑸 a b
76 75 com3r z 𝑵 × 𝑵 a b ~ 𝑸 z 2 nd z b m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y x 𝑸 x ~ 𝑸 a b
77 35 76 syl6bi a 𝑵 b 𝑵 ¬ z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d b y x 𝑸 x ~ 𝑸 a b
78 77 com13 m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d ¬ z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
79 mulcompi a 𝑵 b = b 𝑵 a
80 enqbreq a 𝑵 b 𝑵 a 𝑵 b 𝑵 a b ~ 𝑸 a b a 𝑵 b = b 𝑵 a
81 80 anidms a 𝑵 b 𝑵 a b ~ 𝑸 a b a 𝑵 b = b 𝑵 a
82 79 81 mpbiri a 𝑵 b 𝑵 a b ~ 𝑸 a b
83 opelxpi a 𝑵 b 𝑵 a b 𝑵 × 𝑵
84 breq1 y = a b y ~ 𝑸 z a b ~ 𝑸 z
85 vex a V
86 85 5 op2ndd y = a b 2 nd y = b
87 86 breq2d y = a b 2 nd z < 𝑵 2 nd y 2 nd z < 𝑵 b
88 87 notbid y = a b ¬ 2 nd z < 𝑵 2 nd y ¬ 2 nd z < 𝑵 b
89 84 88 imbi12d y = a b y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b
90 89 ralbidv y = a b z 𝑵 × 𝑵 y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b
91 df-nq 𝑸 = y 𝑵 × 𝑵 | z 𝑵 × 𝑵 y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y
92 90 91 elrab2 a b 𝑸 a b 𝑵 × 𝑵 z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b
93 92 simplbi2 a b 𝑵 × 𝑵 z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b a b 𝑸
94 83 93 syl a 𝑵 b 𝑵 z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b a b 𝑸
95 breq1 x = a b x ~ 𝑸 a b a b ~ 𝑸 a b
96 95 rspcev a b 𝑸 a b ~ 𝑸 a b x 𝑸 x ~ 𝑸 a b
97 96 expcom a b ~ 𝑸 a b a b 𝑸 x 𝑸 x ~ 𝑸 a b
98 82 94 97 sylsyld a 𝑵 b 𝑵 z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b x 𝑸 x ~ 𝑸 a b
99 98 com12 z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b a 𝑵 b 𝑵 x 𝑸 x ~ 𝑸 a b
100 99 a1dd z 𝑵 × 𝑵 a b ~ 𝑸 z ¬ 2 nd z < 𝑵 b a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
101 78 100 pm2.61d2 m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
102 101 ralrimivv m y c 𝑵 d 𝑵 d m x 𝑸 x ~ 𝑸 c d a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
103 24 102 sylbir m y a 𝑵 b 𝑵 b m x 𝑸 x ~ 𝑸 a b a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
104 103 a1i y On m y a 𝑵 b 𝑵 b m x 𝑸 x ~ 𝑸 a b a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
105 13 104 tfis2 y On a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
106 rsp a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
107 105 106 syl y On a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
108 rsp b 𝑵 b y x 𝑸 x ~ 𝑸 a b b 𝑵 b y x 𝑸 x ~ 𝑸 a b
109 107 108 syl6 y On a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
110 109 impd y On a 𝑵 b 𝑵 b y x 𝑸 x ~ 𝑸 a b
111 110 com12 a 𝑵 b 𝑵 y On b y x 𝑸 x ~ 𝑸 a b
112 111 rexlimdv a 𝑵 b 𝑵 y On b y x 𝑸 x ~ 𝑸 a b
113 10 112 mpd a 𝑵 b 𝑵 x 𝑸 x ~ 𝑸 a b
114 breq2 A = a b x ~ 𝑸 A x ~ 𝑸 a b
115 114 rexbidv A = a b x 𝑸 x ~ 𝑸 A x 𝑸 x ~ 𝑸 a b
116 113 115 syl5ibrcom a 𝑵 b 𝑵 A = a b x 𝑸 x ~ 𝑸 A
117 116 rexlimivv a 𝑵 b 𝑵 A = a b x 𝑸 x ~ 𝑸 A
118 1 117 sylbi A 𝑵 × 𝑵 x 𝑸 x ~ 𝑸 A
119 breq2 a = A x ~ 𝑸 a x ~ 𝑸 A
120 breq2 a = A y ~ 𝑸 a y ~ 𝑸 A
121 119 120 anbi12d a = A x ~ 𝑸 a y ~ 𝑸 a x ~ 𝑸 A y ~ 𝑸 A
122 121 imbi1d a = A x ~ 𝑸 a y ~ 𝑸 a x = y x ~ 𝑸 A y ~ 𝑸 A x = y
123 122 2ralbidv a = A x 𝑸 y 𝑸 x ~ 𝑸 a y ~ 𝑸 a x = y x 𝑸 y 𝑸 x ~ 𝑸 A y ~ 𝑸 A x = y
124 64 a1i x ~ 𝑸 a y ~ 𝑸 a ~ 𝑸 Er 𝑵 × 𝑵
125 simpl x ~ 𝑸 a y ~ 𝑸 a x ~ 𝑸 a
126 simpr x ~ 𝑸 a y ~ 𝑸 a y ~ 𝑸 a
127 124 125 126 ertr4d x ~ 𝑸 a y ~ 𝑸 a x ~ 𝑸 y
128 mulcompi 2 nd x 𝑵 1 st x = 1 st x 𝑵 2 nd x
129 elpqn y 𝑸 y 𝑵 × 𝑵
130 breq1 y = x y ~ 𝑸 z x ~ 𝑸 z
131 fveq2 y = x 2 nd y = 2 nd x
132 131 breq2d y = x 2 nd z < 𝑵 2 nd y 2 nd z < 𝑵 2 nd x
133 132 notbid y = x ¬ 2 nd z < 𝑵 2 nd y ¬ 2 nd z < 𝑵 2 nd x
134 130 133 imbi12d y = x y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y x ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd x
135 134 ralbidv y = x z 𝑵 × 𝑵 y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y z 𝑵 × 𝑵 x ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd x
136 135 91 elrab2 x 𝑸 x 𝑵 × 𝑵 z 𝑵 × 𝑵 x ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd x
137 136 simprbi x 𝑸 z 𝑵 × 𝑵 x ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd x
138 breq2 z = y x ~ 𝑸 z x ~ 𝑸 y
139 fveq2 z = y 2 nd z = 2 nd y
140 139 breq1d z = y 2 nd z < 𝑵 2 nd x 2 nd y < 𝑵 2 nd x
141 140 notbid z = y ¬ 2 nd z < 𝑵 2 nd x ¬ 2 nd y < 𝑵 2 nd x
142 138 141 imbi12d z = y x ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd x x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
143 142 rspcva y 𝑵 × 𝑵 z 𝑵 × 𝑵 x ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd x x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
144 129 137 143 syl2anr x 𝑸 y 𝑸 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
145 144 imp x 𝑸 y 𝑸 x ~ 𝑸 y ¬ 2 nd y < 𝑵 2 nd x
146 elpqn x 𝑸 x 𝑵 × 𝑵
147 91 rabeq2i y 𝑸 y 𝑵 × 𝑵 z 𝑵 × 𝑵 y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y
148 147 simprbi y 𝑸 z 𝑵 × 𝑵 y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y
149 breq2 z = x y ~ 𝑸 z y ~ 𝑸 x
150 fveq2 z = x 2 nd z = 2 nd x
151 150 breq1d z = x 2 nd z < 𝑵 2 nd y 2 nd x < 𝑵 2 nd y
152 151 notbid z = x ¬ 2 nd z < 𝑵 2 nd y ¬ 2 nd x < 𝑵 2 nd y
153 149 152 imbi12d z = x y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y y ~ 𝑸 x ¬ 2 nd x < 𝑵 2 nd y
154 153 rspcva x 𝑵 × 𝑵 z 𝑵 × 𝑵 y ~ 𝑸 z ¬ 2 nd z < 𝑵 2 nd y y ~ 𝑸 x ¬ 2 nd x < 𝑵 2 nd y
155 146 148 154 syl2an x 𝑸 y 𝑸 y ~ 𝑸 x ¬ 2 nd x < 𝑵 2 nd y
156 64 a1i x ~ 𝑸 y ~ 𝑸 Er 𝑵 × 𝑵
157 id x ~ 𝑸 y x ~ 𝑸 y
158 156 157 ersym x ~ 𝑸 y y ~ 𝑸 x
159 155 158 impel x 𝑸 y 𝑸 x ~ 𝑸 y ¬ 2 nd x < 𝑵 2 nd y
160 xp2nd x 𝑵 × 𝑵 2 nd x 𝑵
161 146 160 syl x 𝑸 2 nd x 𝑵
162 161 ad2antrr x 𝑸 y 𝑸 x ~ 𝑸 y 2 nd x 𝑵
163 xp2nd y 𝑵 × 𝑵 2 nd y 𝑵
164 129 163 syl y 𝑸 2 nd y 𝑵
165 164 ad2antlr x 𝑸 y 𝑸 x ~ 𝑸 y 2 nd y 𝑵
166 ltsopi < 𝑵 Or 𝑵
167 sotric < 𝑵 Or 𝑵 2 nd x 𝑵 2 nd y 𝑵 2 nd x < 𝑵 2 nd y ¬ 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x
168 166 167 mpan 2 nd x 𝑵 2 nd y 𝑵 2 nd x < 𝑵 2 nd y ¬ 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x
169 168 notbid 2 nd x 𝑵 2 nd y 𝑵 ¬ 2 nd x < 𝑵 2 nd y ¬ ¬ 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x
170 notnotb 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x ¬ ¬ 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x
171 169 170 bitr4di 2 nd x 𝑵 2 nd y 𝑵 ¬ 2 nd x < 𝑵 2 nd y 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x
172 162 165 171 syl2anc x 𝑸 y 𝑸 x ~ 𝑸 y ¬ 2 nd x < 𝑵 2 nd y 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x
173 159 172 mpbid x 𝑸 y 𝑸 x ~ 𝑸 y 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x
174 173 ord x 𝑸 y 𝑸 x ~ 𝑸 y ¬ 2 nd x = 2 nd y 2 nd y < 𝑵 2 nd x
175 145 174 mt3d x 𝑸 y 𝑸 x ~ 𝑸 y 2 nd x = 2 nd y
176 175 oveq2d x 𝑸 y 𝑸 x ~ 𝑸 y 1 st x 𝑵 2 nd x = 1 st x 𝑵 2 nd y
177 128 176 syl5eq x 𝑸 y 𝑸 x ~ 𝑸 y 2 nd x 𝑵 1 st x = 1 st x 𝑵 2 nd y
178 1st2nd2 x 𝑵 × 𝑵 x = 1 st x 2 nd x
179 1st2nd2 y 𝑵 × 𝑵 y = 1 st y 2 nd y
180 178 179 breqan12d x 𝑵 × 𝑵 y 𝑵 × 𝑵 x ~ 𝑸 y 1 st x 2 nd x ~ 𝑸 1 st y 2 nd y
181 xp1st x 𝑵 × 𝑵 1 st x 𝑵
182 181 160 jca x 𝑵 × 𝑵 1 st x 𝑵 2 nd x 𝑵
183 xp1st y 𝑵 × 𝑵 1 st y 𝑵
184 183 163 jca y 𝑵 × 𝑵 1 st y 𝑵 2 nd y 𝑵
185 enqbreq 1 st x 𝑵 2 nd x 𝑵 1 st y 𝑵 2 nd y 𝑵 1 st x 2 nd x ~ 𝑸 1 st y 2 nd y 1 st x 𝑵 2 nd y = 2 nd x 𝑵 1 st y
186 182 184 185 syl2an x 𝑵 × 𝑵 y 𝑵 × 𝑵 1 st x 2 nd x ~ 𝑸 1 st y 2 nd y 1 st x 𝑵 2 nd y = 2 nd x 𝑵 1 st y
187 180 186 bitrd x 𝑵 × 𝑵 y 𝑵 × 𝑵 x ~ 𝑸 y 1 st x 𝑵 2 nd y = 2 nd x 𝑵 1 st y
188 146 129 187 syl2an x 𝑸 y 𝑸 x ~ 𝑸 y 1 st x 𝑵 2 nd y = 2 nd x 𝑵 1 st y
189 188 biimpa x 𝑸 y 𝑸 x ~ 𝑸 y 1 st x 𝑵 2 nd y = 2 nd x 𝑵 1 st y
190 177 189 eqtrd x 𝑸 y 𝑸 x ~ 𝑸 y 2 nd x 𝑵 1 st x = 2 nd x 𝑵 1 st y
191 146 ad2antrr x 𝑸 y 𝑸 x ~ 𝑸 y x 𝑵 × 𝑵
192 mulcanpi 2 nd x 𝑵 1 st x 𝑵 2 nd x 𝑵 1 st x = 2 nd x 𝑵 1 st y 1 st x = 1 st y
193 160 181 192 syl2anc x 𝑵 × 𝑵 2 nd x 𝑵 1 st x = 2 nd x 𝑵 1 st y 1 st x = 1 st y
194 191 193 syl x 𝑸 y 𝑸 x ~ 𝑸 y 2 nd x 𝑵 1 st x = 2 nd x 𝑵 1 st y 1 st x = 1 st y
195 190 194 mpbid x 𝑸 y 𝑸 x ~ 𝑸 y 1 st x = 1 st y
196 195 175 opeq12d x 𝑸 y 𝑸 x ~ 𝑸 y 1 st x 2 nd x = 1 st y 2 nd y
197 191 178 syl x 𝑸 y 𝑸 x ~ 𝑸 y x = 1 st x 2 nd x
198 129 ad2antlr x 𝑸 y 𝑸 x ~ 𝑸 y y 𝑵 × 𝑵
199 198 179 syl x 𝑸 y 𝑸 x ~ 𝑸 y y = 1 st y 2 nd y
200 196 197 199 3eqtr4d x 𝑸 y 𝑸 x ~ 𝑸 y x = y
201 200 ex x 𝑸 y 𝑸 x ~ 𝑸 y x = y
202 127 201 syl5 x 𝑸 y 𝑸 x ~ 𝑸 a y ~ 𝑸 a x = y
203 202 rgen2 x 𝑸 y 𝑸 x ~ 𝑸 a y ~ 𝑸 a x = y
204 123 203 vtoclg A 𝑵 × 𝑵 x 𝑸 y 𝑸 x ~ 𝑸 A y ~ 𝑸 A x = y
205 breq1 x = y x ~ 𝑸 A y ~ 𝑸 A
206 205 reu4 ∃! x 𝑸 x ~ 𝑸 A x 𝑸 x ~ 𝑸 A x 𝑸 y 𝑸 x ~ 𝑸 A y ~ 𝑸 A x = y
207 118 204 206 sylanbrc A 𝑵 × 𝑵 ∃! x 𝑸 x ~ 𝑸 A