Metamath Proof Explorer


Theorem nqereu

Description: There is a unique element of Q. equivalent to each element of N. X. N. . (Contributed by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion nqereu A𝑵×𝑵∃!x𝑸x~𝑸A

Proof

Step Hyp Ref Expression
1 elxp2 A𝑵×𝑵a𝑵b𝑵A=ab
2 pion b𝑵bOn
3 suceloni bOnsucbOn
4 2 3 syl b𝑵sucbOn
5 vex bV
6 5 sucid bsucb
7 eleq2 y=sucbbybsucb
8 7 rspcev sucbOnbsucbyOnby
9 4 6 8 sylancl b𝑵yOnby
10 9 adantl a𝑵b𝑵yOnby
11 elequ2 y=mbybm
12 11 imbi1d y=mbyx𝑸x~𝑸abbmx𝑸x~𝑸ab
13 12 2ralbidv y=ma𝑵b𝑵byx𝑸x~𝑸aba𝑵b𝑵bmx𝑸x~𝑸ab
14 opeq1 c=acd=ad
15 14 breq2d c=ax~𝑸cdx~𝑸ad
16 15 rexbidv c=ax𝑸x~𝑸cdx𝑸x~𝑸ad
17 16 imbi2d c=admx𝑸x~𝑸cddmx𝑸x~𝑸ad
18 elequ1 d=bdmbm
19 opeq2 d=bad=ab
20 19 breq2d d=bx~𝑸adx~𝑸ab
21 20 rexbidv d=bx𝑸x~𝑸adx𝑸x~𝑸ab
22 18 21 imbi12d d=bdmx𝑸x~𝑸adbmx𝑸x~𝑸ab
23 17 22 cbvral2vw c𝑵d𝑵dmx𝑸x~𝑸cda𝑵b𝑵bmx𝑸x~𝑸ab
24 23 ralbii myc𝑵d𝑵dmx𝑸x~𝑸cdmya𝑵b𝑵bmx𝑸x~𝑸ab
25 rexnal z𝑵×𝑵¬ab~𝑸z¬2ndz<𝑵b¬z𝑵×𝑵ab~𝑸z¬2ndz<𝑵b
26 pm4.63 ¬ab~𝑸z¬2ndz<𝑵bab~𝑸z2ndz<𝑵b
27 xp2nd z𝑵×𝑵2ndz𝑵
28 ltpiord 2ndz𝑵b𝑵2ndz<𝑵b2ndzb
29 28 ancoms b𝑵2ndz𝑵2ndz<𝑵b2ndzb
30 27 29 sylan2 b𝑵z𝑵×𝑵2ndz<𝑵b2ndzb
31 30 adantll a𝑵b𝑵z𝑵×𝑵2ndz<𝑵b2ndzb
32 31 anbi2d a𝑵b𝑵z𝑵×𝑵ab~𝑸z2ndz<𝑵bab~𝑸z2ndzb
33 26 32 syl5bb a𝑵b𝑵z𝑵×𝑵¬ab~𝑸z¬2ndz<𝑵bab~𝑸z2ndzb
34 33 rexbidva a𝑵b𝑵z𝑵×𝑵¬ab~𝑸z¬2ndz<𝑵bz𝑵×𝑵ab~𝑸z2ndzb
35 25 34 bitr3id a𝑵b𝑵¬z𝑵×𝑵ab~𝑸z¬2ndz<𝑵bz𝑵×𝑵ab~𝑸z2ndzb
36 xp1st z𝑵×𝑵1stz𝑵
37 elequ2 m=bdmdb
38 37 imbi1d m=bdmx𝑸x~𝑸cddbx𝑸x~𝑸cd
39 38 2ralbidv m=bc𝑵d𝑵dmx𝑸x~𝑸cdc𝑵d𝑵dbx𝑸x~𝑸cd
40 39 rspccv myc𝑵d𝑵dmx𝑸x~𝑸cdbyc𝑵d𝑵dbx𝑸x~𝑸cd
41 opeq1 c=1stzcd=1stzd
42 41 breq2d c=1stzx~𝑸cdx~𝑸1stzd
43 42 rexbidv c=1stzx𝑸x~𝑸cdx𝑸x~𝑸1stzd
44 43 imbi2d c=1stzdbx𝑸x~𝑸cddbx𝑸x~𝑸1stzd
45 44 ralbidv c=1stzd𝑵dbx𝑸x~𝑸cdd𝑵dbx𝑸x~𝑸1stzd
46 45 rspccv c𝑵d𝑵dbx𝑸x~𝑸cd1stz𝑵d𝑵dbx𝑸x~𝑸1stzd
47 eleq1 d=2ndzdb2ndzb
48 opeq2 d=2ndz1stzd=1stz2ndz
49 48 breq2d d=2ndzx~𝑸1stzdx~𝑸1stz2ndz
50 49 rexbidv d=2ndzx𝑸x~𝑸1stzdx𝑸x~𝑸1stz2ndz
51 47 50 imbi12d d=2ndzdbx𝑸x~𝑸1stzd2ndzbx𝑸x~𝑸1stz2ndz
52 51 rspccv d𝑵dbx𝑸x~𝑸1stzd2ndz𝑵2ndzbx𝑸x~𝑸1stz2ndz
53 46 52 syl6 c𝑵d𝑵dbx𝑸x~𝑸cd1stz𝑵2ndz𝑵2ndzbx𝑸x~𝑸1stz2ndz
54 40 53 syl6 myc𝑵d𝑵dmx𝑸x~𝑸cdby1stz𝑵2ndz𝑵2ndzbx𝑸x~𝑸1stz2ndz
55 54 imp myc𝑵d𝑵dmx𝑸x~𝑸cdby1stz𝑵2ndz𝑵2ndzbx𝑸x~𝑸1stz2ndz
56 36 55 syl5 myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵2ndz𝑵2ndzbx𝑸x~𝑸1stz2ndz
57 27 56 mpdi myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵2ndzbx𝑸x~𝑸1stz2ndz
58 57 3imp myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵2ndzbx𝑸x~𝑸1stz2ndz
59 1st2nd2 z𝑵×𝑵z=1stz2ndz
60 59 breq2d z𝑵×𝑵x~𝑸zx~𝑸1stz2ndz
61 60 rexbidv z𝑵×𝑵x𝑸x~𝑸zx𝑸x~𝑸1stz2ndz
62 61 3ad2ant2 myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵2ndzbx𝑸x~𝑸zx𝑸x~𝑸1stz2ndz
63 58 62 mpbird myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵2ndzbx𝑸x~𝑸z
64 enqer ~𝑸Er𝑵×𝑵
65 64 a1i ab~𝑸zx~𝑸z~𝑸Er𝑵×𝑵
66 simpr ab~𝑸zx~𝑸zx~𝑸z
67 simpl ab~𝑸zx~𝑸zab~𝑸z
68 65 66 67 ertr4d ab~𝑸zx~𝑸zx~𝑸ab
69 68 ex ab~𝑸zx~𝑸zx~𝑸ab
70 69 reximdv ab~𝑸zx𝑸x~𝑸zx𝑸x~𝑸ab
71 63 70 syl5com myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵2ndzbab~𝑸zx𝑸x~𝑸ab
72 71 3expia myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵2ndzbab~𝑸zx𝑸x~𝑸ab
73 72 impcomd myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵ab~𝑸z2ndzbx𝑸x~𝑸ab
74 73 rexlimdva myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵ab~𝑸z2ndzbx𝑸x~𝑸ab
75 74 ex myc𝑵d𝑵dmx𝑸x~𝑸cdbyz𝑵×𝑵ab~𝑸z2ndzbx𝑸x~𝑸ab
76 75 com3r z𝑵×𝑵ab~𝑸z2ndzbmyc𝑵d𝑵dmx𝑸x~𝑸cdbyx𝑸x~𝑸ab
77 35 76 syl6bi a𝑵b𝑵¬z𝑵×𝑵ab~𝑸z¬2ndz<𝑵bmyc𝑵d𝑵dmx𝑸x~𝑸cdbyx𝑸x~𝑸ab
78 77 com13 myc𝑵d𝑵dmx𝑸x~𝑸cd¬z𝑵×𝑵ab~𝑸z¬2ndz<𝑵ba𝑵b𝑵byx𝑸x~𝑸ab
79 mulcompi a𝑵b=b𝑵a
80 enqbreq a𝑵b𝑵a𝑵b𝑵ab~𝑸aba𝑵b=b𝑵a
81 80 anidms a𝑵b𝑵ab~𝑸aba𝑵b=b𝑵a
82 79 81 mpbiri a𝑵b𝑵ab~𝑸ab
83 opelxpi a𝑵b𝑵ab𝑵×𝑵
84 breq1 y=aby~𝑸zab~𝑸z
85 vex aV
86 85 5 op2ndd y=ab2ndy=b
87 86 breq2d y=ab2ndz<𝑵2ndy2ndz<𝑵b
88 87 notbid y=ab¬2ndz<𝑵2ndy¬2ndz<𝑵b
89 84 88 imbi12d y=aby~𝑸z¬2ndz<𝑵2ndyab~𝑸z¬2ndz<𝑵b
90 89 ralbidv y=abz𝑵×𝑵y~𝑸z¬2ndz<𝑵2ndyz𝑵×𝑵ab~𝑸z¬2ndz<𝑵b
91 df-nq 𝑸=y𝑵×𝑵|z𝑵×𝑵y~𝑸z¬2ndz<𝑵2ndy
92 90 91 elrab2 ab𝑸ab𝑵×𝑵z𝑵×𝑵ab~𝑸z¬2ndz<𝑵b
93 92 simplbi2 ab𝑵×𝑵z𝑵×𝑵ab~𝑸z¬2ndz<𝑵bab𝑸
94 83 93 syl a𝑵b𝑵z𝑵×𝑵ab~𝑸z¬2ndz<𝑵bab𝑸
95 breq1 x=abx~𝑸abab~𝑸ab
96 95 rspcev ab𝑸ab~𝑸abx𝑸x~𝑸ab
97 96 expcom ab~𝑸abab𝑸x𝑸x~𝑸ab
98 82 94 97 sylsyld a𝑵b𝑵z𝑵×𝑵ab~𝑸z¬2ndz<𝑵bx𝑸x~𝑸ab
99 98 com12 z𝑵×𝑵ab~𝑸z¬2ndz<𝑵ba𝑵b𝑵x𝑸x~𝑸ab
100 99 a1dd z𝑵×𝑵ab~𝑸z¬2ndz<𝑵ba𝑵b𝑵byx𝑸x~𝑸ab
101 78 100 pm2.61d2 myc𝑵d𝑵dmx𝑸x~𝑸cda𝑵b𝑵byx𝑸x~𝑸ab
102 101 ralrimivv myc𝑵d𝑵dmx𝑸x~𝑸cda𝑵b𝑵byx𝑸x~𝑸ab
103 24 102 sylbir mya𝑵b𝑵bmx𝑸x~𝑸aba𝑵b𝑵byx𝑸x~𝑸ab
104 103 a1i yOnmya𝑵b𝑵bmx𝑸x~𝑸aba𝑵b𝑵byx𝑸x~𝑸ab
105 13 104 tfis2 yOna𝑵b𝑵byx𝑸x~𝑸ab
106 rsp a𝑵b𝑵byx𝑸x~𝑸aba𝑵b𝑵byx𝑸x~𝑸ab
107 105 106 syl yOna𝑵b𝑵byx𝑸x~𝑸ab
108 rsp b𝑵byx𝑸x~𝑸abb𝑵byx𝑸x~𝑸ab
109 107 108 syl6 yOna𝑵b𝑵byx𝑸x~𝑸ab
110 109 impd yOna𝑵b𝑵byx𝑸x~𝑸ab
111 110 com12 a𝑵b𝑵yOnbyx𝑸x~𝑸ab
112 111 rexlimdv a𝑵b𝑵yOnbyx𝑸x~𝑸ab
113 10 112 mpd a𝑵b𝑵x𝑸x~𝑸ab
114 breq2 A=abx~𝑸Ax~𝑸ab
115 114 rexbidv A=abx𝑸x~𝑸Ax𝑸x~𝑸ab
116 113 115 syl5ibrcom a𝑵b𝑵A=abx𝑸x~𝑸A
117 116 rexlimivv a𝑵b𝑵A=abx𝑸x~𝑸A
118 1 117 sylbi A𝑵×𝑵x𝑸x~𝑸A
119 breq2 a=Ax~𝑸ax~𝑸A
120 breq2 a=Ay~𝑸ay~𝑸A
121 119 120 anbi12d a=Ax~𝑸ay~𝑸ax~𝑸Ay~𝑸A
122 121 imbi1d a=Ax~𝑸ay~𝑸ax=yx~𝑸Ay~𝑸Ax=y
123 122 2ralbidv a=Ax𝑸y𝑸x~𝑸ay~𝑸ax=yx𝑸y𝑸x~𝑸Ay~𝑸Ax=y
124 64 a1i x~𝑸ay~𝑸a~𝑸Er𝑵×𝑵
125 simpl x~𝑸ay~𝑸ax~𝑸a
126 simpr x~𝑸ay~𝑸ay~𝑸a
127 124 125 126 ertr4d x~𝑸ay~𝑸ax~𝑸y
128 mulcompi 2ndx𝑵1stx=1stx𝑵2ndx
129 elpqn y𝑸y𝑵×𝑵
130 breq1 y=xy~𝑸zx~𝑸z
131 fveq2 y=x2ndy=2ndx
132 131 breq2d y=x2ndz<𝑵2ndy2ndz<𝑵2ndx
133 132 notbid y=x¬2ndz<𝑵2ndy¬2ndz<𝑵2ndx
134 130 133 imbi12d y=xy~𝑸z¬2ndz<𝑵2ndyx~𝑸z¬2ndz<𝑵2ndx
135 134 ralbidv y=xz𝑵×𝑵y~𝑸z¬2ndz<𝑵2ndyz𝑵×𝑵x~𝑸z¬2ndz<𝑵2ndx
136 135 91 elrab2 x𝑸x𝑵×𝑵z𝑵×𝑵x~𝑸z¬2ndz<𝑵2ndx
137 136 simprbi x𝑸z𝑵×𝑵x~𝑸z¬2ndz<𝑵2ndx
138 breq2 z=yx~𝑸zx~𝑸y
139 fveq2 z=y2ndz=2ndy
140 139 breq1d z=y2ndz<𝑵2ndx2ndy<𝑵2ndx
141 140 notbid z=y¬2ndz<𝑵2ndx¬2ndy<𝑵2ndx
142 138 141 imbi12d z=yx~𝑸z¬2ndz<𝑵2ndxx~𝑸y¬2ndy<𝑵2ndx
143 142 rspcva y𝑵×𝑵z𝑵×𝑵x~𝑸z¬2ndz<𝑵2ndxx~𝑸y¬2ndy<𝑵2ndx
144 129 137 143 syl2anr x𝑸y𝑸x~𝑸y¬2ndy<𝑵2ndx
145 144 imp x𝑸y𝑸x~𝑸y¬2ndy<𝑵2ndx
146 elpqn x𝑸x𝑵×𝑵
147 91 rabeq2i y𝑸y𝑵×𝑵z𝑵×𝑵y~𝑸z¬2ndz<𝑵2ndy
148 147 simprbi y𝑸z𝑵×𝑵y~𝑸z¬2ndz<𝑵2ndy
149 breq2 z=xy~𝑸zy~𝑸x
150 fveq2 z=x2ndz=2ndx
151 150 breq1d z=x2ndz<𝑵2ndy2ndx<𝑵2ndy
152 151 notbid z=x¬2ndz<𝑵2ndy¬2ndx<𝑵2ndy
153 149 152 imbi12d z=xy~𝑸z¬2ndz<𝑵2ndyy~𝑸x¬2ndx<𝑵2ndy
154 153 rspcva x𝑵×𝑵z𝑵×𝑵y~𝑸z¬2ndz<𝑵2ndyy~𝑸x¬2ndx<𝑵2ndy
155 146 148 154 syl2an x𝑸y𝑸y~𝑸x¬2ndx<𝑵2ndy
156 64 a1i x~𝑸y~𝑸Er𝑵×𝑵
157 id x~𝑸yx~𝑸y
158 156 157 ersym x~𝑸yy~𝑸x
159 155 158 impel x𝑸y𝑸x~𝑸y¬2ndx<𝑵2ndy
160 xp2nd x𝑵×𝑵2ndx𝑵
161 146 160 syl x𝑸2ndx𝑵
162 161 ad2antrr x𝑸y𝑸x~𝑸y2ndx𝑵
163 xp2nd y𝑵×𝑵2ndy𝑵
164 129 163 syl y𝑸2ndy𝑵
165 164 ad2antlr x𝑸y𝑸x~𝑸y2ndy𝑵
166 ltsopi <𝑵Or𝑵
167 sotric <𝑵Or𝑵2ndx𝑵2ndy𝑵2ndx<𝑵2ndy¬2ndx=2ndy2ndy<𝑵2ndx
168 166 167 mpan 2ndx𝑵2ndy𝑵2ndx<𝑵2ndy¬2ndx=2ndy2ndy<𝑵2ndx
169 168 notbid 2ndx𝑵2ndy𝑵¬2ndx<𝑵2ndy¬¬2ndx=2ndy2ndy<𝑵2ndx
170 notnotb 2ndx=2ndy2ndy<𝑵2ndx¬¬2ndx=2ndy2ndy<𝑵2ndx
171 169 170 bitr4di 2ndx𝑵2ndy𝑵¬2ndx<𝑵2ndy2ndx=2ndy2ndy<𝑵2ndx
172 162 165 171 syl2anc x𝑸y𝑸x~𝑸y¬2ndx<𝑵2ndy2ndx=2ndy2ndy<𝑵2ndx
173 159 172 mpbid x𝑸y𝑸x~𝑸y2ndx=2ndy2ndy<𝑵2ndx
174 173 ord x𝑸y𝑸x~𝑸y¬2ndx=2ndy2ndy<𝑵2ndx
175 145 174 mt3d x𝑸y𝑸x~𝑸y2ndx=2ndy
176 175 oveq2d x𝑸y𝑸x~𝑸y1stx𝑵2ndx=1stx𝑵2ndy
177 128 176 eqtrid x𝑸y𝑸x~𝑸y2ndx𝑵1stx=1stx𝑵2ndy
178 1st2nd2 x𝑵×𝑵x=1stx2ndx
179 1st2nd2 y𝑵×𝑵y=1sty2ndy
180 178 179 breqan12d x𝑵×𝑵y𝑵×𝑵x~𝑸y1stx2ndx~𝑸1sty2ndy
181 xp1st x𝑵×𝑵1stx𝑵
182 181 160 jca x𝑵×𝑵1stx𝑵2ndx𝑵
183 xp1st y𝑵×𝑵1sty𝑵
184 183 163 jca y𝑵×𝑵1sty𝑵2ndy𝑵
185 enqbreq 1stx𝑵2ndx𝑵1sty𝑵2ndy𝑵1stx2ndx~𝑸1sty2ndy1stx𝑵2ndy=2ndx𝑵1sty
186 182 184 185 syl2an x𝑵×𝑵y𝑵×𝑵1stx2ndx~𝑸1sty2ndy1stx𝑵2ndy=2ndx𝑵1sty
187 180 186 bitrd x𝑵×𝑵y𝑵×𝑵x~𝑸y1stx𝑵2ndy=2ndx𝑵1sty
188 146 129 187 syl2an x𝑸y𝑸x~𝑸y1stx𝑵2ndy=2ndx𝑵1sty
189 188 biimpa x𝑸y𝑸x~𝑸y1stx𝑵2ndy=2ndx𝑵1sty
190 177 189 eqtrd x𝑸y𝑸x~𝑸y2ndx𝑵1stx=2ndx𝑵1sty
191 146 ad2antrr x𝑸y𝑸x~𝑸yx𝑵×𝑵
192 mulcanpi 2ndx𝑵1stx𝑵2ndx𝑵1stx=2ndx𝑵1sty1stx=1sty
193 160 181 192 syl2anc x𝑵×𝑵2ndx𝑵1stx=2ndx𝑵1sty1stx=1sty
194 191 193 syl x𝑸y𝑸x~𝑸y2ndx𝑵1stx=2ndx𝑵1sty1stx=1sty
195 190 194 mpbid x𝑸y𝑸x~𝑸y1stx=1sty
196 195 175 opeq12d x𝑸y𝑸x~𝑸y1stx2ndx=1sty2ndy
197 191 178 syl x𝑸y𝑸x~𝑸yx=1stx2ndx
198 129 ad2antlr x𝑸y𝑸x~𝑸yy𝑵×𝑵
199 198 179 syl x𝑸y𝑸x~𝑸yy=1sty2ndy
200 196 197 199 3eqtr4d x𝑸y𝑸x~𝑸yx=y
201 200 ex x𝑸y𝑸x~𝑸yx=y
202 127 201 syl5 x𝑸y𝑸x~𝑸ay~𝑸ax=y
203 202 rgen2 x𝑸y𝑸x~𝑸ay~𝑸ax=y
204 123 203 vtoclg A𝑵×𝑵x𝑸y𝑸x~𝑸Ay~𝑸Ax=y
205 breq1 x=yx~𝑸Ay~𝑸A
206 205 reu4 ∃!x𝑸x~𝑸Ax𝑸x~𝑸Ax𝑸y𝑸x~𝑸Ay~𝑸Ax=y
207 118 204 206 sylanbrc A𝑵×𝑵∃!x𝑸x~𝑸A