Metamath Proof Explorer


Theorem nqerid

Description: Corollary of nqereu : the function /Q acts as the identity on members of Q. . (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)

Ref Expression
Assertion nqerid A 𝑸 / 𝑸 A = A

Proof

Step Hyp Ref Expression
1 nqerf / 𝑸 : 𝑵 × 𝑵 𝑸
2 ffun / 𝑸 : 𝑵 × 𝑵 𝑸 Fun / 𝑸
3 1 2 ax-mp Fun / 𝑸
4 elpqn A 𝑸 A 𝑵 × 𝑵
5 id A 𝑸 A 𝑸
6 enqer ~ 𝑸 Er 𝑵 × 𝑵
7 6 a1i A 𝑸 ~ 𝑸 Er 𝑵 × 𝑵
8 7 4 erref A 𝑸 A ~ 𝑸 A
9 df-erq / 𝑸 = ~ 𝑸 𝑵 × 𝑵 × 𝑸
10 9 breqi A / 𝑸 A A ~ 𝑸 𝑵 × 𝑵 × 𝑸 A
11 brinxp2 A ~ 𝑸 𝑵 × 𝑵 × 𝑸 A A 𝑵 × 𝑵 A 𝑸 A ~ 𝑸 A
12 10 11 bitri A / 𝑸 A A 𝑵 × 𝑵 A 𝑸 A ~ 𝑸 A
13 4 5 8 12 syl21anbrc A 𝑸 A / 𝑸 A
14 funbrfv Fun / 𝑸 A / 𝑸 A / 𝑸 A = A
15 3 13 14 mpsyl A 𝑸 / 𝑸 A = A