Metamath Proof Explorer


Theorem nrexdv

Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003) (Proof shortened by Wolf Lammen, 5-Jan-2020)

Ref Expression
Hypothesis nrexdv.1 φ x A ¬ ψ
Assertion nrexdv φ ¬ x A ψ

Proof

Step Hyp Ref Expression
1 nrexdv.1 φ x A ¬ ψ
2 1 ralrimiva φ x A ¬ ψ
3 ralnex x A ¬ ψ ¬ x A ψ
4 2 3 sylib φ ¬ x A ψ