Metamath Proof Explorer


Theorem nrexrmo

Description: Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017)

Ref Expression
Assertion nrexrmo ¬ x A φ * x A φ

Proof

Step Hyp Ref Expression
1 pm2.21 ¬ x A φ x A φ ∃! x A φ
2 rmo5 * x A φ x A φ ∃! x A φ
3 1 2 sylibr ¬ x A φ * x A φ