Metamath Proof Explorer


Theorem nrgdomn

Description: A nonzero normed ring is a domain. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nrgdomn R NrmRing R Domn R NzRing

Proof

Step Hyp Ref Expression
1 domnnzr R Domn R NzRing
2 simpr R NrmRing R NzRing R NzRing
3 eqid norm R = norm R
4 eqid AbsVal R = AbsVal R
5 3 4 nrgabv R NrmRing norm R AbsVal R
6 5 ne0d R NrmRing AbsVal R
7 6 adantr R NrmRing R NzRing AbsVal R
8 4 abvn0b R Domn R NzRing AbsVal R
9 2 7 8 sylanbrc R NrmRing R NzRing R Domn
10 9 ex R NrmRing R NzRing R Domn
11 1 10 impbid2 R NrmRing R Domn R NzRing