Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
nrgdomn
Next ⟩
nrgtgp
Metamath Proof Explorer
Ascii
Unicode
Theorem
nrgdomn
Description:
A nonzero normed ring is a domain.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
nrgdomn
⊢
R
∈
NrmRing
→
R
∈
Domn
↔
R
∈
NzRing
Proof
Step
Hyp
Ref
Expression
1
domnnzr
⊢
R
∈
Domn
→
R
∈
NzRing
2
simpr
⊢
R
∈
NrmRing
∧
R
∈
NzRing
→
R
∈
NzRing
3
eqid
⊢
norm
⁡
R
=
norm
⁡
R
4
eqid
⊢
AbsVal
⁡
R
=
AbsVal
⁡
R
5
3
4
nrgabv
⊢
R
∈
NrmRing
→
norm
⁡
R
∈
AbsVal
⁡
R
6
5
ne0d
⊢
R
∈
NrmRing
→
AbsVal
⁡
R
≠
∅
7
6
adantr
⊢
R
∈
NrmRing
∧
R
∈
NzRing
→
AbsVal
⁡
R
≠
∅
8
4
abvn0b
⊢
R
∈
Domn
↔
R
∈
NzRing
∧
AbsVal
⁡
R
≠
∅
9
2
7
8
sylanbrc
⊢
R
∈
NrmRing
∧
R
∈
NzRing
→
R
∈
Domn
10
9
ex
⊢
R
∈
NrmRing
→
R
∈
NzRing
→
R
∈
Domn
11
1
10
impbid2
⊢
R
∈
NrmRing
→
R
∈
Domn
↔
R
∈
NzRing